روش تکرار تغییراتی تعمیم یافته برای حل معادلات مشتقات جزئی فرکتال
محورهای موضوعی : آنالیز عددیهما افراز 1 * , علیرضا خلیلی گلمانخانه 2
1 - گروه ریاضی دانشگاه پیام نور تهران ایران
2 - گروه فیزیک، واحد ارومیه، دانشگاه آزاد اسلامی ،ارومیه ، ایران
کلید واژه: fractal partial differential equations, Generalized Variational Iteration Method, Fractal Calculus, Fractal,
چکیده مقاله :
حسابان کسری شاخهای از ریاضیات کلاسیک است ، که با عملیات مشتق و انتگرال رتبه کسری سروکار دارد. اخیراً تحقیقات زیادی شامل حسابان کسری برای مطالعه پدیده های مربوط به ساختارها و فرایندهای فرکتال انجام شده است. فرکتالها شکلهایی هستند که دارای بعد کسری بوده و به طور طبیعی در پدیده های غیرخطی و نامتعادل در زمینههای مختلف ظاهر میشوند. در سالهای اخیر انواع مختلفی از مشتقات و حسابان کسری و فرکتال توسط دانشمندان زیادی ارائه شده و به طور گسترده مورد استفاده قرار گرفته است. اندازهگیریها در فرآیندهای فیزیکی موضعی است و حسابان کسری موضعی ابزار مفیدی برای حل برخی از مسائل فیزیک و مهندسی میباشد. گنگال حسابان کسری موضعی را بررسی کرده و ارتباطی بین آن و فرکتالها را به دست آورده است. با استفاده از حسابان کسری موضعی و ویژگیهای فرکتال، F^α-حسابان یا حسابان فرکتال را روی زیر مجموعهای از خط حقیقی تعریف کرده که یک حساب ساده، سودمند، ساختاری و الگوریتمی است. در این پژوهش، ابتدا مفاهیم اولیه و اساسی F^α- حسابان یا حسابان فرکتال را بیان میکنیم. سپس روش تکرار تغییراتی تعمیم یافته در حسابان فرکتال را پیشنهاد میکنیم. برای نشان دادن کارایی حسابان فرکتال و روش جدید، چند معادله دیفرانسیل مشتقات جزئی فرکتال را با این روش حل کرده و نشان میدهیم که این روش نسبت به روش تکرار تغییراتی لاپلاس کسری موضعی بهتر، کاراتر، راحتتر و مناسبتر است
Fractional calculus is a branch of classical mathematics, which deals with the generalization of fractional order derivative and integral operator. Recently, a great deal of research has been carried out on the fractional calculus to study the phenomena associated with fractal structures and processes. Fractals have a fractional dimension and occur naturally in non-linear and imbalanced phenomena in various forms and contexts. In recent years, various types of derivatives and fractional and fractal calculus have been proposed by many scientists and have been extensively utilized. Measurements are localized in physical processes, and local fractional calculus is a useful tool for solving some type of physical and engineering problems. Gangal studied the local fractional calculus and got the relation between it and the fractals. Using the local fractional calculus and fractal properties, he defined the fractal-alpha calculus on a subset of the real line, which is a simple calculs, useful, structural and algorithmic. In this study, we first describe the fractal-F alpha calculus. Next, we propose The generalized variational iteration method based on the fractal calculus. To show the efficiency of fractal calculus and the new method, we solve several fractal partial differential equations with this method and show that this method is better, easier and more suitable than the two other methods mention the above.
[1] Kolwankar, K.M., Gangal, A.D, Hölder exponents of irregular signals and local fractional derivatives, Pramana J. Phys., 1997, 49-68.
[2] Tatom F. B, The Relationship between Fractional Calculus and Fractals, Fractals, 3(1), 1995, 217-229.
[3] Golmankhaneh.A.K, On the calculus of the parameterized fractal curves, Turk. J. Phys. 41 (2017) 418-425.
[4] Golmankhaneh.A.K, Fernandez.A, Fractal Calculus of Functions on Cantor Tartan Spaces. Fractal Fract 2(30) (2008) 1-13.
[5]Golmankhaneh.A. K, Fernandez.A, Golmankhaneh. A. K, Baleanu.D, Diffusion on middle-X Cantor sets, Entropy, 20(504) (2018) 1-13.
[6] Parvate.A, Gangal.A.D, Calculus on fractal subsets of real-line I: Formulation, Fractals 17(01) (2009) 53-148.
[7] Parvate.A, Gangal.A.D, Calculus on fractal subsets of real line II: Conjugacy with ordinary calculus, Fractals 19(03) (2011) 271-290.
[8] Parvate.A, Satin.S, Gangal.A.D, Calculus on fractal curves in R^n, Fractals, 19(01) (2011), 15-27.
[9] Satin.S, Gangal.A.D, Langevin Equation on Fractal Curves, Fractals 24(03) (2016), 1650028.
[10] Ashrafi.s , Golmankhaneh. A.K., Energy Straggling Function by Fa -Calculus, ASME J. Comput. Nonlin. Dyn. 12(5) (2017), 051010.
[11]Golmankhaneh.A.K,Golmankhaneh.A.K, Baleanu. D, About Maxwell’s equations on fractal subsets of R3, Cent. Eur. J. Phys., 11(6) (2013) 863-867.
[12] Golmankhaneh. A.K, On the Fractal Langevin Equation, Fractal Fract.,3(1):11 (2019) 1-9.
[13] Golmankhaneh.A.K, Statistical Mechanics Involving Fractal Temperature, Fractal Fract. 3(2):20 (2019) 1-12.
[14] Golmankhaneh.A.K, Baleanu.D, Fractal calculus involving gauge function. Commun. Nonlinear Sci, 37, (2016) 125-130.
[15]Golmankhaneh.A.K,Golmankhaneh.A.K, Baleanu.D, Lagrangian and Hamiltonian mechanics on fractals subset of real-line, Int.J. Theor. Phys., 52(11), (2013) 4210-4217.
[16]Golmankhaneh.A.K.Golmankhaneh.A.K,Baleanu.D,About Schr¨odinger equation on fractals curves imbedding in R3, Int. J. Theor. Phys., 54(4) (2015), 1275-1282.
[17] Golmankhaneh.A.K, Baleanu.D, Diffraction from fractal grating Cantor sets, J. Mod. Opt., 63(14) (2016), 1364-1369.
[18] Golmankhaneh.A.K, Cattani.C, Fractal Logistic Equation, Fractal Fract.,DOI:10.3390/fractalfract3030041.
[19]Golmankhaneh.A.K, Fazlollahi.V, Baleanu.D, Newtonian mechanics on fractals subset of real-line, Rom. Rep. Phys., 65(1) (2013) 84-93.
[20]Golmankhaneh.A.K,Fernandez.A, Random Variables and Stable Distributions on Fractal Cantor Sets, Fractal Fract., 3(2):31(2019) 1-13.
[21] Golmankhaneh.A.K, Tunc.C, On the Lipschitz condition in the fractal calculus, Chaos, Soliton Fract. , 95 (2017), 140-147.
[22] Golmankhaneh.A.K, Tunc.C, Sumudu Transform in Fractal Calculus, Appl. Math. Comput., 350 (2019) 386-401.
[23] Golmankhaneh. A. K, KamalAli. K, Fractal Kronig-Penney model involving fractal comb potential, DOI: 10. 22124/Journal of Mathematical Modeling, Vol. 9, No. 3, 2021, pp. 331-345.
[24] Golmankhaneh. A. K, Fractal Calculus and its Applications, World Scientific, 2022. doi:10.1142/12988.
[25] Ashrafi. S, Golmankhaneh. A. K , Dimension of quantum mechanical path, chain rule, and extension of Landau’s energy straggling method using F^α-Calculus, Turk. J. Phys., 42(2) (2018), 104-115