ارزیابی و طبقه بندی ریسک بیمه گذاران در صنعت بیمه با استفاده از تحلیل پوششی داده ها
محورهای موضوعی : آمارسیده نسیم شبیری 1 , محسن رستمی مال خلیفه 2 * , هاشم نیکومرام 3 , محمدرضا میری لواسانی 4
1 - گروه حسابداری، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسالمی واحد علوم و تحقیقات، تهران، ایران
2 - گروه ریاضی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
3 - گروه حسابداری، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
4 - دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
کلید واژه: Data Envelopment Analysis, Car insurance, Insurance Industry, Insurer's risk classification,
چکیده مقاله :
صنعت بیمه یکی از مهمترین ارکان توسعه اقتصادی کشورهاست. با مروری بر سهم صنعت بیمه در اقتصاد کشورهای توسعهیافته میتوان دریافت که بیمه در مقایسه با خدمات دیگر نقش و اهمیت بیشتر و چشمگیرتری دارد.انجام هرگونه فعالیت بیمهای مستلزم پذیرش ریسک میباشد. بهعبارت دیگر، شرکتهای بیمه با قبول ریسک، باعث ایجاد آرامش در جامعه میگردند. از طرف دیگر، شرکتهای بیمه بهمنظور مدیریت ریسک دریافتی، نیازمند دسترسی به ابزارهای تحلیل ریسک قدرتمند میباشند. یکی از روشهای شناسایی منابع ریسک و کمیسازی آنها تکنیک تحلیل پوششی دادهها است. بههمین دلیل، تحلیل پوششی دادهها از کاربرد زیادی در صنعت بیمه برخوردار است.در این مقاله با استفاده از داده های مربوط به بیمهنامه های بدنه اتومبیل شرکت بیمه سامان طی سالهای 97-98،ابتدا شاخصهای تاثیرگذار در ریسک بیمهگذاران بیمه بدنه اتومبیل در پایگاه داده موجود شناساییمیگردد و با بررسی دقیق ویژگیهای این شاخصها، آنها در دو گروه ورودی و خروجی دستهبندی میگردند و سپس با استفاده از تحلیل پوششی دادهها مدلی برای پیشبینی میزان ریسک بیمهگذاران آتی (به لحاظ ریسک داشتن خسارت یا عدم خسارت)ارائه میشود. این مدل قابلیت استفاده در سیاستگذاری های آتی شرکت بیمه را دارد. بهعنوان مثال شرکتهای بیمه با استفاده از نتایج تحلیل پوششی دادهها میتوانند میزان حق بیمه دریافتی از بیمهگذاران مختلف را تعدیل کنند و با ایجاد سیستم نرخگذاری مبتنی بر ریسک بیمهگذاران، میزان رضایت بیمهگذاران را افزایش داده و از طرفی سودآوری خود را ارتقا دهند.
One of the most important factors for the economic development of countries is the insurance industry.A closer look at the economies of Developed Countries shows that the insurance industry has a significant contribution in the economic development of these countries. The insurance industry needs to accept the risk in order to carry out any insurance activity. In the other word, the insurance companies create tranquillity in the society by accepting the risk. On the other hand, the insurance companies need to access to the powerful risk analysis tools in order to manage the potential risks. Data envelopment analysis (DEA) is one of the most important techniques to identify the risk resources. Hence, data envelopment analysis is widely used in the insurance industry. This study uses the dataset of the car insurance policies of Saman Insurance Company during the years 2018-2019. First, we identify the effective indicators and examine the properties of these indicators to classify them into input and output groups. Finally, we use data envelopment analysis to propose a model for predictionthe risk of insurers (in terms of existence of damage risk or absence of damage risk). This model can be used in the future policies of the insurance company. For example, the insurance companies can use the results of data envelopment analysis to adjust the premiums received from different insurers and increase the satisfaction for insurers and their profitability by creating a rating system based on the insurers 'risk.
[1] Allahyar, M., & Rostamy-Malkhalifeh, M. (2015). Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale. Computers & Industrial Engineering, 82, 78-81.
[2] Azadeh, A., & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438-7448.
[3] Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
[4] Banks, E. (2005). Catastrophic risk: analysis and management. John Wiley & Sons.
[5] Banker, R.D., Charnes, A., Cooper, W.W. (1984), Some models for estimating technical and scale inefficiencies in DEA, Management Science, Vol. 30, pp. 1078-1092.
[6] Bednarek, R., Chalkias, K., & Jarzabkowski, P. (2019). Managing risk as a duality of harm and benefit: a study of organizational risk objects in the global insurance industry. British Journal of Management.
[7] Chapman, R. J. (2011). Simple tools and techniques for enterprise risk management (Vol. 553). John Wiley & Sons.
[8] Charnes, A., Cooper, W.W., Rhodes, E. (1978), Measuring the efficiency of
decision making units, European Journal of Operational Research, Vol. 2, pp. 429-444.
[9] Chopra, S., & Sodhi, M. S. (2004). Supply-chain breakdown. MIT Sloan management review, 46(1), 53-61.
[10] Daykin, C. D. (2004). Financial governance and risk management of social security. Studies28th ISSA General As-sembly, Beijing, 12-18.
[11] Gajek L. And Ostaszewski K. M., (2004), Financial Risk Management for Pension Plans, ELSEVIER.
[12] Grmanová, E., & Strunz, H. (2017). Efficiency of insurance companies: Application of DEA and Tobit analyses. Journal of International Studies, 10(3).
[13] Gharakhani, D., Eshlaghy, A. T., Hafshejani, K. F., Mavi, R. K., & Lotfi, F. H. (2018). Common weights in dynamic network DEA with goal programming approach for performance assessment of insurance companies in Iran. Management Research Review.
[14] Heidinger, D., & Gatzert, N. (2018). Awareness, determinants and value of reputation risk management: Empirical evidence from the banking and insurance industry. Journal of Banking & Finance, 91, 106-118.
[15] Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of operational research, 202(1), 16-24.
[16] Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8.
[17] Kaffash, S., Azizi, R., Huang, Y., & Zhu, J. (2020). A survey of data envelopment analysis applications in the insurance industry 1993–2018. European Journal of Operational Research, 284(3), 801-813.
[18] Lamberton, C., Brigo, D., & Hoy, D. (2017). Impact of Robotics, RPA and AI on the insurance industry: challenges and opportunities. Journal of Financial Perspectives, 4(1).
[19] Nourani, M., Devadason, E. S., & Chandran, V. G. R. (2018). Measuring technical efficiency of insurance companies using dynamic network DEA: An intermediation approach. Technological and Economic Development of Economy, 24(5), 1909-1940.
[20] Peykani, P., Mohammadi, E., Rostamy-Malkhalifeh, M., & Hosseinzadeh Lotfi, F. (2019). Fuzzy data envelopment analysis approach for ranking of stocks with an application to Tehran stock exchange. Advances in Mathematical Finance and Applications, 4(1), 31-43.
[21] Rahmani, A., Hosseinzadeh Lotfi, F., Rostamy-Malkhalifeh, M., & Allahviranloo, T. (2016). A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution. Advances in Fuzzy Systems, 2016.
[22] Rezaee, M. J., Yousefi, S., Eshkevari, M., Valipour, M., & Saberi, M. (2020). Risk analysis of health, safety and environment in chemical industry integrating linguistic FMEA, fuzzy inference system and fuzzy DEA. Stochastic Environmental Research and Risk Assessment, 34(1), 201-218.
[23] Roll, Y., Cook, W. D., & Golany, B. (1991). Controlling factor weights in data envelopment analysis. IIE transactions, 23(1), 2-9.
[24] Sandström, A. (2016). Handbook of solvency for actuaries and risk managers: theory and practice. CRC Press.
[25] Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of operational research, 142(1), 16-20.
[26] Seyed Esmaeili, F., & Rostamy-Malkhalifed, M. (2017). Data envelopment analysis with fixed inputs, undesirable outputs and negative data. J. Data Envel. Anal. Decis. Sci, 2017.
[27] Shiu, Y. M. (2020). How does reinsurance and derivatives usage affect financial performance? Evidence from the UK non-life insurance industry. Economic Modelling, 88, 376-385.
[28] Thistlethwaite, J., & Wood, M. O. (2018). Insurance and climate change risk management: rescaling to look beyond the Horizon. British Journal of Management, 29(2), 279-298
[29] Vanany, I., Zailani, S., & Pujawan, N. (2009). Supply chain risk management: literature review and future research. International Journal of Information Systems and Supply Chain Management (IJISSCM), 2(1), 16-33.
[30] Wang, S., & Faber, R. (2006). Enterprise risk management for property-casualty insurance companies. CAS and SOA Jointly Sponsored Research Project.
[31] Wu, B., & Knott, A. M. (2006). Entrepreneurial risk and market entry. Management science, 52(9), 1315-1330.
[32] Yousefi, S., Alizadeh, A., Hayati, J., & Baghery, M. (2018). HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: A study of automotive parts industry in Iran. Safety science, 102, 144-158.
[33] Zakaria, S. (2017). The use ofFINANCIAL derivatives in measuring bank risk management efficiency: A data envelopment analysis approach. Asian Academy of Management Journal, 22(2).