حل عددی مسأله ریلی- استوکس کسری با استفاده از توابع پایه شعاعی مکان- زمان
محورهای موضوعی : آمارنفیسه نقره ای 1 , اصغر کرایه چیان 2 , علیرضا سهیلی 3
1 - گروه ریاضیات کاربردی، دانشکده علوم ریاضی، دانشگاه فردوسی مشهد، مشهد، ایران
2 - گروه ریاضیات کاربردی، دانشکده علوم ریاضی، دانشگاه فردوسی مشهد، مشهد، ایران
3 - گروه ریاضیات کاربردی، دانشکده علوم ریاضی، دانشگاه فردوسی مشهد، مشهد، ایران
کلید واژه: Gaussian radial basis function, Single exponential transformation, Space-time formulation, Fractional calculus, Sinc quadrature rule,
چکیده مقاله :
در این مقاله، جواب مسأله دو بعدی ریلی- استوکس برای یک جریان گرمایی درجه دوم تعمیم یافته با مشتق کسری را تقریب میزنیم. این تقریب بر پایه استفاده از توابع پایه شعاعی (RBFs) مکان- زمان و روش انتگرال گیری عددی سینک میباشد. در این روش، از تابع پایه شعاعی گاوسین استفاده شده و بین متغیرهای زمان و مکان تمایز قائل نمیشویم و نقاط هممحلی، هم شامل مختصات زمان و هم شامل مختصات مکان هستند. از روش انتگرال گیری عددی سینک با تبدیل نمایی یگانه برای تقریب قسمت انتگرالی مشتق کسری استفاده میکنیم. مشتق کسری، ریمان- لیوویل انتخاب شده است.روش ارائه شده روی دو مثال با مقادیر مختلف برای مرتبه مشتق کسری، پیاده سازی شده که نتایج حاصل، اثر بخشی روش را تأیید میکند و نشان میدهد که با استفاده از تعداد کمی از نقاط هممحلی برای تابع پایه شعاعی میتوان نتایج دقیقی بدست آورد. لازم به ذکر است که تمامی محاسبات با کمک نرم افزار متمتیکا انجام شده است.
In this paper, we approximate the solution of two-dimensional Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. This approximation is based on the space-time radial basis functions (RBFs) and the Sinc quadrature rule. In this method, we use Gaussian radial basis function and don't distinguish between time and place variables and the collocation points have both the coordinates of time and space. We use the Sinc quadrature rule with single exponential transformation to approximate the integral part of fractional derivatives. The chosen fractional derivatives is Riemann – Liouville.This method is implemented on two examples with different values of the fractional derivative order. Obtained results illustrate the effectiveness of our method and sh ow that one can obtain accurate results with a small number of the collocation points for the radial basis function. It should be noted that all calculations in this paper have been done using Mathematica software.
[1] K. B. Oldham, J. Spanie. The Fractional Calculus. Academic Press. New York (1974)
[2] K. S. Miller, B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley. New York (1993)
[3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier. Amsterdam (2006)
[4] R. Hilfer. Applications of Fractional Calculus in Physics. World Scientific. Singapore (2000)
[5] A. Carpinteri, F. Mainardi. Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag. Wien (1997)
[6] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer. Heidelberg (2010)
[7] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press. London. Hackensack NJ (2010)
[8] C. Fetecau. The Rayleigh-Stokes problem for heated second grade fuids. International Non-Linear Mechanics 37: 1011–1015 (2002)
[9] J. Zierep, C. Fetecau. Energetic balance for the Rayleigh-Stokes problem of a second grade fluid. International Engineering Science 45: 155–162 (2007)
[10] Chang-Ming Chen a, F. Liu, V. Anh. Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Applied Mathematics and Computation 204: 340–351 (2008)
[11] P. h. Zhuang, Q. Liu. Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Applied Mathematics and Mechanics -Engl. Ed. 30(12): 1533–1546 (2009)
[12] C. Fetecau, J. Zierep. The Rayleigh-Stokes problem for a Maxwell fluid. Z. angew. Math. Phys. 54(6): 1086–1093 (2003)
[13] C. Wu. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Applied Numerical Mathematics 59: 2571–2583 (2009)
[14] C. M Chen, F. Liu, V. Anh. A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Computational and Applied Mathematics. 223: 777–789 (2009)
[15] C. Xue, J. Nie. Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space. Applied Mathematical Modelling. 33: 524–531 (2009)
[16] A. Mohebbi, M. Abbaszadeh, M. Dehghan. Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Computer Methods in Applied Mechanics and Engineering 264: 163–177 (2013)
[17] G. E. Fasshouer. Mesh free approximation methods with MATLAB. USA. World Scientific (2007)
[18] H. Wendland. Scattered Data Approximation. Cambridg University Press. New York (2005)
[19] A. Fedoseyer, M. J. Friedman, E. J. Kansa. Improved multiquadrics method for elliptic partial differential equations via PDE collocation on the boundary. Computers and Mathematics with Applications 43: 439–455 (2002)
[20] B. Fornberg, G. Wright, E. Larsson. Some observation regarding interpolants in the limit of flat radial basis functions. Computers and Mathematics with Applications 47: 37–55 (2004)
[21] T. Okayama, T. Matsuo, M. Sugihara. Approximate Formulae for Fractional Derivatives by Means of Sinc Methods. Concrete and Applicable Mathematics 8: 470–488 (2010)
[22] T. Okayama, T. Matsuo, M. Sugihara. Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. Computational and Applied Mathematics 234: 1211–1227 (2010)
[23] G. A. Zakeri, M. Navab. Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular Volterra integral equation. Computational Physics 229: 6548–6557 (2010)
[24] B. V. Riley. The numerical solution of Volterra integral equations with nonsmooth solutions based on sinc approximation. Applied Numerical Mathematics 9: 249–257 (1992)
[25] G. Baumann, F. Stenger. Fractional calculus and Sinc methods. Fractional Calculus and Applied Analysis 14: 568–622 (2011)
[26] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag. New York (1993)
[27] F. Stenger. Handbook of Sinc Numerical Methods. CRC Press. Boca Raton (2011)
[28] J. Lund, K. L. Bowers. Sinc method for quadrature and differential equations. SIAM. (1992)
[29] K. Tanaka, M. Sugihara, K. Murota. Function Classes for Successful DE-Sinc Approximations. Mathematics of Computation 78: 1553–1571 (2009)
[30] K. Tanaka, M. Sugihara, K. Murota, M. Mori. Function classes for double exponential integration formulas. Numerische Mathematik 111: 631–655 (2009)
[31] M. Sugihara, T. Matsuo. Recent developments of the Sinc numerical methods. Computational and Applied Mathematics 164–165: 673–689 (2004)
[32] M. Mori, M. Sugihara. The double-exponential transformation in numerical analysis. Computational and Applied Mathematics 127: 287–296 (2001)