رویکردی برای به دست آوردن جواب های کارای سره نزدیک به نقطه ایده آل در بهینه سازی چندهدفه
محورهای موضوعی : آماربهنام حذار 1 , قاسم توحیدی 2 * , بهروز دانشیان 3
1 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 - گروه ریاضی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه ریاضی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Multi-objective optimization, Proper efficiency, trade-off, Ideal point, weighted sum scalarization,
چکیده مقاله :
توازن میان توابع هدف در بهینهسازی چندهدفه یکی از ابزارهای تفسیر و بررسی جوابهای کارا است. جوابهای کارای سره یکی از مفاهیم مهم از نظر تئوری و عملی میباشد که نشان دهنده رفتار توابع هدف طی یک فرایند تغییر می باشد؛ جواب-های کارای سره جواب های کارایی هستند که ناهنجاری های توابع هدف در بعضی از نقاط را فیلتر می کنند و این به تصمیم گیری برای به دست آوردن جواب های با اهمیت بیشتر توسط مدیریت کمک شایانی خواهد کرد. یکی از مهمترین ابزارهای به دست آوردن جواب با توازن کراندار در بهینه سازی چندهدفه، روش اسکالرسازی مجموع وزنی است که بسیاری از نویسندگان این نوع از اسکالرسازی را در بهینه سازی تعاملی بررسی کرده اند. این مقاله روشی برای به دست آوردن جواب-های کارای سره نزدیک به نقطه ایدآل با دیدگاه تئوری و تعاملی و با استفاده از اسکالرسازی وزنی ارائه میدهد. با توجه به اینکه نزدیکی به نقطه ایدآل میتواند یکی از ترجیحات تصمیم گیرنده باشد؛ این روش، ترجیحات تصمیم گیرنده را بدون از دست دادن تئوری در نظر میگیرد. بنابراین این مقاله رویکردی برای یافتن جواب های کارای سره نزدیک به نقطه ایدآل ارائه می دهد.
Trade-off between objective functions in multi-objective optimization is one of the tools for interpreting and studying efficient solutions. Properly efficient solutions are one of the most important theoretical and practical concepts that represent the behavior of the objective functions during a process change. Actually, these solutions are those efficient solutions that filter the anomalies of objective functions at some points, and this will help the manager to decision making to choose more important solutions. One of the most important tools for obtaining solutions with bounded trade-off in multi-objective optimization field is the Sum weighted scalarization method, which many authors have been studying it in interactive optimization field. This paper provides a method for obtaining properly efficient solutions near the ideal point with a theoretical and interactive view and using Sum weighted scalarization method. Since being near to ideal point will be abele to a preference of decision maker; this method examines the preferences of the decision maker without sacrifice the theory. Therefore, this paper presents an approach to finding properly efficient solutions near to the ideal point.
[1] وکیلی, جواد, دهقانی, حلیمه. مساله برنامهریزی خطی دوسطحی برای محاسبه نقطه ضدایدهآل. پژوهش های نوین در ریاضی 2(7), 31-42,(1395).
[2] غزنوی, مهرداد, اکبری, فرشته, خرم, اسماعیل. تعیین جوابهای تقریباً کارای مسائل بهینهسازی چندهدفه با استفاده از روش اسکالرسازی مقید ترکیبی. پژوهش های نوین در ریاضی.پذیرفته شده،انتشار آنلاین 20 اردیبهشت (1399).
[3] خشنوا, آذر, مظفری, محمدرضا. مساله حمل و نقل کاملا فازی. پژوهش های نوین در ریاضی (1394) 1(3): 41-54..
[4] Ehrgott M., Multicriteria optimization. Berlin, Germany: Springer, (2005).
[5] Eichfelder G., Adaptive scalarization methods in multiobjective optimization. Berlin, Germany: Springer, (2008).
[6] Miettinen K., Nonlinear multiobjective optimization. Berlin, Germany: Springer, (1999).
[7] K. Miettinen, F. Ruiz., NAUTILUS framework: towards trade-o_-free interaction in multiobjec- tive optimization, Journal of Business Economics 86 (2016), 5-21.
[8] Miettinen K, Hakanen J, Podkopaev D., Interactive Nonlinear Multiobjective Optimization Methods. Berlin, Germany: Springer, (2016).
[9] Geoffrion A. M., Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications (1968) 22: 618-630.
[10] Kuhn H, Tucker A., nonlinear programming. In J. Neyman, editor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (1951): 481-492.
[11] Benson H. P., An improved definition of proper efficiency for vector maximization with respect to cones. Journal of Mathematical Analysis and Applications (1979) 71: 232-241.
[12] Borwein J. M., Proper efficient points for maximizations with respect to cones. SIAM Journal on Control and Optimization (1977) 15: 57-63.
[13] Bouyssou, D., Using DEA as a tool for MCDM: some remarks." Journal of the operational Research Society (1999) 50.9: 974-978.
[14] Chankong V, Haimes Y, Multiobjective Decision Making Theory and Methodology, Elsevier, New York (1983).
[15] Hartley R, on cone-efficiency, cone-convexity and cone-compactness. SIAM Journal on Applied Mathematics, (1978), 34: 211-222.
[16] Henig M. I., Proper efficiency with respect to cones. Journal of Optimization Theory and Applications (1982) 36: 387-407.
[17] L. Pourkarimi, M. Karimi., Characterization of substantially and quasi-substantially effcient solutions in multiobjective optimization problems, Turkish Journal of Mathematics. 41.2 (2017), 293-304.
[18] L. Pourkarimi, M. Karimi., Quasi-proper e_ciency: a quantitative enhanced e_ciency, Turkish Journal of Mathematics 42.3 (2018): 1156-1165.
[19] Sawaragi Y, Nakayama H, Tanino T., Theory of Multiobjective Optimization, Academic Press, Orlando, FL, (1985).
[20] Klinger, A., Letter to the Editor-Improper Solutions of the Vector Maximum Problem. Operational Research Letter (1967) 15.3: 570-572.
[21] Geromel J. C, Ferreira P. A. V., An upper bound on properly efficient solutions in multiobjective optimization. Operational Research Letter (1991) 10: 83-86