حضور کلاد D زوگزانتله در مرجان های نرم و سخت غالب اطراف جزیره لارک، خلیج فارس
محورهای موضوعی : تک یاخته شناسیمحمد حسن شاه حسینی 1 * , پر گل قوام مصطفوی 2 , غلامحسین وثوقی 3 , ساناز آزادبادی 4
1 - دانشگاه آزاد اسلامی، واحد شهرقدس، گروه میکروبیولوژی
2 - دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، گروه بیولوژی دریا
3 - دانشکده دامپزشکی دانشگاه تهران
4 - دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، گروه بیولوژی دریا
کلید واژه: خلیج فارس, Symbiodinium, کلاد D, جلبک تک سلولی,
چکیده مقاله :
سابقه و هدف: مرجانهای سخت و نرم خلیج فارس دارای جلبک تک سلولی همزیستی به نام زوگزانتله میباشند که نقش مهمی در تأمین مواد آلی مورد نیاز مرجانها ایفا مینماید. آبسنگهای مرجانی این ناحیه از خلیج به دلیل قرار گرفتن در عرضهای جغرافیایی نیمه گرمسیری و وجود دامنه وسیع تغییرات دمای آب و شوری بالا همواره تحت تأثیرتنش های محیطی میباشند. این تنش ها میتواند منجر به تغییر زوگزانتلههای همزیست با آنها گردد. این مطالعه با هدف شناسایی کلادهای Symbiodinium به روش مولکولی و نیز بررسی حضور کلاد D زوگزانتله در مرجانهای نرم و سخت جزیرۀ لارک در خلیج فارس انجام شده است. مواد و روشها: 3 گونه از مرجانهای نرم شمال و شمال شرق جزیره لارک و 5 گونه مرجان سخت در شمال جزیره جمع آوری گردید. پس از استخراج DNA، زیرواحد بزرگ ریبوزومی S28 با استفاده از واکنش زنجیرهای پلیمراز (PCR) تکثیر شد. سپس توالی زیرواحد بزرگ ریبوزومی S28 با استفاده از آنالیز فیلوژنی، مورد تجزیه و تحلیل قرار گرفت. یافتهها: به دنبال تکثیر قطعهای از ژن زیرواحد بزرگ ریبوزومی S28، توالی bp780 به دست آمد. پس از توالییابی قطعه ژنی تکثیر یافته و مقایسه آن با ترادفهای ژنی موجود در بانک ژنی مشخص گردید که کلادهای همزیست با مرجان های نرم اطراف جزیره لارک، از نوع کلاد D میباشند. نتیجه گیری: غالب بودن کلاد D به علت درجه حرارت بالای خلیج فارس و نیز شرایط ناپایدار تنگۀ هرمز در مرجانهای نرم و سخت جزیرۀ لارک کاملاً طبیعی میباشد.
Abstract Background and Objectives: Dominant sclerectinian and soft corals contain the symbiotic single cell called zooxanthellae which have important role in preparing organic material for coral requirements. The coral reefs of this area in the gulf are always under effects of environmental conditions, such as subtropical latitude, temperature and salinity variations, changing symbiotic zooxanthellae. The aims of this study was identification of Symbiodinium clades and presence of clade D in sclerectinian and soft corals of Larak island by molecular methods. Materials and Methods: Three soft coral species and five sclerectinian coral species were collected from north and north east of Larak island, respectively. After DNA extraction, partial 28S ribosomal DNA of Symbidinium were amplified by polymerase chain reaction (PCR). Then PCR products were analyzed by phylogenetic analyses of the partial 28S ribosomal sequence. Results: To follow amplification of 28S large ribosomal subunit gene, the 780 bp PCR products were sequenced and were compared to the gene bank. The results showed that all the symbiotic clades of soft corals in Larak Island belonged to clade D. Conclusion: Dominance of clade D in sclerectinian and soft corals in Larak island due to of high temperature in the Persian Gulf and unstable condition of Hormoz strait is normal and natural.
1. Nybakken JW. Marine Biology, An Ecological Approach. Wesely. 2000; 481p.
2. Goldberg WM. The ecology of the coral-octocoral communities on the southeast Florida coast: geomorphology, species composition, and zonation. Bull Mar Sci. 1973; 23: 465–488.
3. Kinzie RA. The zonation of West Indian gorgonians. Bull Mar Sci. 1973; 23: 93–154.
4. Kinzie RA. Plexaura homomalla: the biology and ecology of a harvestable marine resource. Stud Trop Oceanogr. 1974; 12: 22–28.
5. Muzik K. Octocorallia (Cnidaria) from Carrie Bow Cay, Belize. Smithson Contrib Mar Sci. 1982; 12: 303–310.
6. Lasker HR, Coffroth MA. Octocoral distributions at Carrie Bow Cay, Belize. Mar Ecol Prog Ser. 1983; 13: 21–28.
7. Fabricius KE, Alderslade P. Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the Central west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville. 2001.
8. Fabricius KE. Tissue loss and mortality in soft corals following mass-bleaching. Coral Reefs. 1999; 18: 54.
9. Strychar KB, Coates M, Sammmarco P W, Piva T J. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. J Exp Mar Biol Ecol. 2005; 320: 159–177.
10. Baker AC, Starger C J, McClanahan T R, Glynn P W. Corals’ adaptive climate change. Nature .2004; 430(7001): 741
11. Goreau T, McClanahan T, Hayes R, Strong A. Conservation of coral reefs after the 1998 global bleaching event. Cons Biol. 2000; 14(1): 5–15.
12. Wilkinson C. The 1997-98 mass coral bleaching and mortality events: 2 years on. In: Wilkinson CR (ed) Status of coral reefs of the world: 2000. Australian Institute of Marine Science, Townsville, 2000; pp 21-34.
13. Glynn PW, Colley SB. A collection of studies on the effects of the 1997–98 El Nin˜ o-Southern Oscillation events on corals and coral reefs in the eastern tropical Pacific. Bull Mar Sci. 2001; 69(1): 1–288.
14. Rowan R, Powers DA. A molecular genetic classification of zooxanthellae and the evolution of animal –algal symbiosis. Science. 1991a; 251: 1348-1351
15. Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst. 2003; 34: 661-689.
16. Pochon X, LaJeunesse TC, Pawlowski J. Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol . 2004; 146: 17-27.
17. Brown BE, Dunne RP, Goodson M S, Douglas A E. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs. 2002; 21: 119–26.
18. Rowan R, Powers DA. Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad SciUSA. 1992; 89(8): 3639-43.
19. Baker AC. Symbiosis ecology of reef-building corals. Ph.D dissertation, of Miami, 1999; pp. 120.
20. Loh W, Sakai K, Hoegh-Guldberg O. Coral zooanthellae diversity in bleached reefs. Proc. Int Coral Reef Symp., 9th, Bali,p. 2000; 33.
21. Pochon X, Pawlowski J, Zaninetti L, Rowan R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol. 2001; 139: 1069-1078.
22. van Oppen MJH, Willis B L, van Vugt HWJA, Miller D J. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol. 2000; 9: 1363-1373.
23. Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ. Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. J Eukaryot Microbiol. 2001;48: 368–73.
24. Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas A E. Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol ProgSer. 2002a; 244: 17–26.
25. Toller WW, Rowan R, Knowlton N. Zooxanthellae of the Montastraea annularisspecies complex: Patterns of distribution of four taxa of Symbiodinium on differentreefs and across depths. Biol Bul. 2001b; 201: 348–59.
26. Wilcox TP. Large subunit ribosomal RNA systematic of symbiotic dinoflagellates: morphology does not recapitulate phylogeny. Mol Phylogenet Evol .1998; 10:436-448.
27. Brown BE, Dunne RP, Goodson MS, Douglas A E. Bleaching patterns in reef corals. Nature. 2000;404: 142–43.
28. Brown BE, Dunne RP, Goodson MS, Douglas AE. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs. 2002; 21: 119–26.
29. Hunter CL, Morden CW, Smith CM. The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc. Int. Coral Reef Symp., 8th, Panama. 1997; 2: 1599–1602.
30. LaJeunesse TC. Investigating the biodiversity, ecology an phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol. 2001;37: 866–80.
31. LaJeunesse TC. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol. 2002; 141: 387–400.
32. Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA. Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol. Phylogenet Evol. 2002a;23: 97–111.
33. Santos SR, Taylor DJ, Kinzie RA, Sakai K, Coffroth MA. Evolution of length variation and heteroplasmy in the chloroplast rDNA of symbiotic dinoflagellates (Symbiodinium, Dinophyta) and a novel insertion in the universal core region of the large subunit rDNA. Phycologia. 2002b;41: 311–18.
34. Santos SR, Guti´errez-Rodr´ıguez C, Coffroth MA. Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-rDNAsequences. Mar Biotechnol. 2003a; 5: 134–40.
35. Pochon X, Pawlowski J, Zaninetti L, Rowan R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol. 2001;139:1069–78.
36. Rowan R. Thermal adaptation in reef coral symbionts. Nature. 2004; 430: 742.
37. Chen CA, Lam KK, Nakano Y, Tsai WS. Stable association of a stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperate tolerant coral Ouastrea crispata, (Scleractinia; Faviidae) in subtropical nonreefal coral communities. Zool Stud. 2003; 42: 540-550.
38. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22): 4673-80.
39. Ghavam-Mostafavi PG, Fatemi MR, Shahhosseiny MH, Hoegh-Guldberg O, Loh WK. Predominance of clade D symbiodinium in shallow-water reef-building corals of Kish and larak islands (Persian Gulf, Iran). Mar Biol; 2007; 153: 25-34.
40. vanOppen MJH. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the role of geography and host relationships Molecular Ecology. 2005; 14: 2403 – 241.
41. Baker AC. Reef corals bleach to survivechange. Nature.2001;411: 765–66.
42. Benayahu Y, Loya Y. Competition for space among coral-reef sessile organisms at Eilat, Red Sea. Bull Mar Sci. 1981; 31: 514-522.
_||_