تجزیه زیستی پیرن توسط مخمر تحمل کننده نمک بازیدیوآسکوس پرسیکوس
محورهای موضوعی : زیست فناوری میکروبیعالیه کامیابی 1 , حمید مقیمی 2 *
1 - دانشجوی کارشناسی ارشد، دانشگاه تهران، پردیس علوم، دانشکده زیستشناسی، بخش زیستفناوری میکروبی
2 - استادیار، دانشگاه تهران، پردیس علوم، دانشکده زیستشناسی، بخش زیستفناوری میکروبی
کلید واژه: پیرن, تجزیه زیستی, بازیدیوآسکوس پرسیکوس, شرایط نمکی,
چکیده مقاله :
سابقه و هدف: هیدروکربنهای آروماتیک چند حلقهای یکی از مهمترین ترکیبات سمی موجود نفت خام و آلاینده های محیطی می باشند. هدف از انجام این پژوهش جداسازی مخمرهای تحمل کننده نمک تجزیه کننده هیدروکربن پیرن بود.مواد و روش ها: ابتدا جداسازی مخمرها از خاکهای آلوده و شور مناطق نفت خیز جنوب صورت گرفت. سپس غربالگری این مخمرها بر اساس توانایی رشد بر روی محیط نمکی و همچنین قابلیت حذف نفت انجام شد. پس از انتخاب و شناسایی مولکولی سویه توانمند، توانایی تحمل نمک و رشد در حضور آلاینده پیرن و همچنین توانایی تجزیه پیرن و سایر هیدروکربنهای سبک مورد بررسی قرار گرفت.یافتهها: در این پژوهش، جدایه EBL-C16 با رشد در غلظتهای 0 تا 15% نمک و حذف 75.51 % نفت خام، به عنوان جدایه برتر انتخاب شد. شناسایی مولکولی این جدایه شباهت 100 درصدی به بازیدیوآسکوس پرسیکوس را نشان داد. بررسی رشد نشان داد که این مخمر در غلظت صفر تا 20% نمک قادر به رشد است. بررسی حذف در غلظت 500 میلیگرم در لیتر پیرن و 2.5 درصد نمک نشان داد که این مخمر پس از 21 روز توانایی حذف 78.57 % از پیرن را دارد و در این شرایط میزان رشد آن به 1.4 گرم در لیتر وزن خشک و تولید CO2 آن نیز به 3.1 میلیگرم رسید. همچنین بازیدیوآسکوس پرسیکوس توانایی تجزیه فنانترن و آنتراسن نیز داشت.نتیجه گیری: یافتههای حاصل میتواند به منظور استفاده از مخمرهای تحمل کننده نمک برای پاکسازی زیستی مناطق شور آلوده به نفت به کار گرفته شود.
Background & Objectives: Poly-aromatic hydrocarbons are one of the most important toxic compounds of crude oil and environmental pollutants. The purpose of this study was to isolate halo-tolerant pyrene- degrading yeast. Materials & Methods: Isolation of yeasts from contaminated and saline soils of oil-rich southern regions was carried out, at first. Then, screening of yeast isolates was performed based on their ability to grow in the salty medium and biodegrade oil. After screening and molecular identification of the optimal strain, its ability to tolerate salt and grow in the presence of pyrene, as well as the ability to degrade pyrene and other low molecular weight hydrocarbons were studied. Results: In this study, EBL-C16 was selected as the superior isolate, with growth in salt concentrations of 0-15% and eliminating 75.51% of the crude oil. Molecular identification of this isolate showed 100% similarity to Basidioascus persicus. Growth analysis showed the ability of this yeast isolate to grow in salt concentrations of 0 to 20 %. Growth and removal studies in the presence of 500 mg/l of pyrene and 2.5% salt showed 78.57% pyrene removal after 21 days, with the growth rate of 1.4 g/l of dry weight, as well as CO2 production of 3.1 mg. B. persicus had the ability to break down phenanthrene and anthracene, as well. Conclusion: The results can be used to use halo-tolerant yeasts for bioremediation of oil-contaminated saline areas.
polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of
bioaugmentation on an aged PAH-contaminated soil. Bioremediat J. 2015; 19(1): 9-17.
2. Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current
knowledge and future directions. J Chem Technol Biotechnol. 2005; 80(7): 723-736.
3. Ortega-González DK, Cristiani-Urbina E, Flores-Ortíz CM, Cruz-Maya JA, Cancino-Díaz JC,
Jan-Roblero J. Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum
anthropi, Fusarium sp. & their coculture. Appl Biochem Biotechnol. 2015; 175(2): 1123-1138.
4. Zhou H, Wang H, Huang Y, Fang T. Characterization of pyrene degradation by halophilic
Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int
Biodeterior Biodegrad. 2016; 107: 62-69.
5. Kamyabi A, Nouri H, Moghimi H. Synergistic effect of Sarocladium sp. and Cryptococcus sp.
co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem
Biotechnol. 2017; 182(1): 324-34.
6. Hassanshahian M, Zeynalipour MS, Musa FH. Isolation and characterization of crude oil
degrading bacteria from the Persian Gulf (Khorramshahr provenance). Mar Pollut Bull. 2014;
82(1): 39-44.
7. Moghimi H, Tabar RH, Hamedi J. Assessing the biodegradation of polycyclic aromatic
hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J
Microbiol Biotechnol. 2017; 33(7): 136.
8. Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV. Degradation of polycyclic
aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci
Pollut Res. 2014; 1: 1-9.
9. Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE. Biodegradation of organic
pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut
Res. 2014; 21(16): 9578-9588.
10. Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in
hypersaline environments. Front Microbiol. 2014; 5.
11. Pointing S. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol.
2001; 57(1): 20-33.
12. Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC. Degradation of polycyclic
aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard
Mater. 2011; 185(1): 212-219.
13. Cui Z, Xu G, Gao W, Li Q, Yang B, Yang G, Zheng L. Isolation and characterization of
Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and
fluoranthene by their syntrophic association with Marinobacter strains. Int Biodeterior
Biodegrad. 2014; 91: 45-51.
14. Hui W, Haiyan Z, Yong HUANG TF. Isolation and degradation characteristics of a HMW
-PAHs degrading halophilic strain. Tsinghua Sci Technol. 2015; 55(1): 87-92.
15. Gomes M, Gonzales-Limache E, Sousa S, Dellagnezze B, Sartoratto A, Silva L, Gieg L,
Valoni E, Souza R, Torres A. Exploring the potential of halophilic bacteria from oil terminal
environments for biosurfactant production and hydrocarbon degradation under high-salinity
conditions. Int Biodeterior Biodegrad. 2018; 126: 231-242.
16. Hadibarata T, Khudhair AB, Kristanti RA, Kamyab H. Biodegradation of pyrene by
Candida sp. S1 under high salinity conditions. Bioprocess Biosyst Eng. 2017; 40(9):
1411-1418.
17. u u h h u O’ v . L
in fungal biology: current methods in fungal biology: Springer Science & Business Media;
2012.
18. Rahman K, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat I. Towards efficient
crude oil degradation by a mixed bacterial consortium. Bioresour Technol. 2002; 85(3):
257-261.
19. Heidarytabar R, Azin E, Moghimi H. Introduction of halotolerant Mucor circinelloides
UTMC 5032 for bioremediation crude oil hydrocarbons. Biol J Microorganism. 2017; 6(21):
31-45.
20. Hesham AE-L, Wang Z, Zhang Y, Zhang J, Lv W, Yang M. Isolation and identification of
a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol.
2006; 56(2): 109.
21. Sambrook J. Molecular cloning : a laboratory manual / Joseph Sambrook, David W.
Russell. Russell DW, Cold Spring Harbor L, editors. Cold spring harbor, N.Y: Cold Spring
Harbor Laboratory; 2001.
22. Amberg DC, Burke DJ, Strathern JN. Methods in Yeast Genetics: A cold spring harbor
laboratory course manual, 2005 Edition (Cold Spring). 2005.
23. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S. Petroleum and
polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in
Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol.
2012; 112: 83-90.
24. Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FA, Maria do Carmo
RP, Bento FM. Biodegradation potential of oily sludge by pure and mixed bacterial cultures.
Bioresour Technol. 2011; 102(23): 11003-11010.
25. Juckpech K, Pinyakong O, Rerngsamran P. Degradation of polycyclic aromatic
hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp.
T20. Sci Asia. 2012; 38: 147.
26. Singh H. Mycoremediation: fungal bioremediation: John Wiley & Sons; 2006.
27. Cerniglia CE. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and
future applications in bioremediation. J Ind Microbiol Biotechnol. 1997; 19(5): 324-333.
28. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J. Oxidative
degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus
D1 in the presence of synthetic mediators. Enzyme Microb Technol. 2006; 39(6): 1242-1249.
29. Deng Y, Zhang Y, Hesham AE-L, Liu R, Yang M. Cell surface properties of five
polycyclic aromatic compound-degrading yeast strains. Appl Microbiol Biotechnol. 2010; 86
(6): 1933-1939.
30. Chen B, Wang Y, Hu D. Biosorption and biodegradation of polycyclic aromatic
hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J Hazard Mater. 2010;
179(1): 845-851.
31. Arun A, Eyini M. Comparative studies on lignin and polycyclic aromatic hydrocarbons
degradation by basidiomycetes fungi. Bioresour Technol. 2011; 102(17): 8063-8070.
32. Ting W, Yuan S, Wu S, Chang B. Biodegradation of phenanthrene and pyrene by
Ganoderma lucidum. Int Biodeterior Biodegrad. 2011; 65(1): 238-242.
33. Ghosh I, Mukherji S. Diverse effect of surfactants on pyrene biodegradation by a
Pseudomonas strain utilizing pyrene by cell surface hydrophobicity induction. Int Biodeterior
Biodegrad. 2016; 108: 67-75
_||_
polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of
bioaugmentation on an aged PAH-contaminated soil. Bioremediat J. 2015; 19(1): 9-17.
2. Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current
knowledge and future directions. J Chem Technol Biotechnol. 2005; 80(7): 723-736.
3. Ortega-González DK, Cristiani-Urbina E, Flores-Ortíz CM, Cruz-Maya JA, Cancino-Díaz JC,
Jan-Roblero J. Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum
anthropi, Fusarium sp. & their coculture. Appl Biochem Biotechnol. 2015; 175(2): 1123-1138.
4. Zhou H, Wang H, Huang Y, Fang T. Characterization of pyrene degradation by halophilic
Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int
Biodeterior Biodegrad. 2016; 107: 62-69.
5. Kamyabi A, Nouri H, Moghimi H. Synergistic effect of Sarocladium sp. and Cryptococcus sp.
co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem
Biotechnol. 2017; 182(1): 324-34.
6. Hassanshahian M, Zeynalipour MS, Musa FH. Isolation and characterization of crude oil
degrading bacteria from the Persian Gulf (Khorramshahr provenance). Mar Pollut Bull. 2014;
82(1): 39-44.
7. Moghimi H, Tabar RH, Hamedi J. Assessing the biodegradation of polycyclic aromatic
hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J
Microbiol Biotechnol. 2017; 33(7): 136.
8. Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV. Degradation of polycyclic
aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci
Pollut Res. 2014; 1: 1-9.
9. Castillo-Carvajal LC, Sanz-Martín JL, Barragán-Huerta BE. Biodegradation of organic
pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut
Res. 2014; 21(16): 9578-9588.
10. Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in
hypersaline environments. Front Microbiol. 2014; 5.
11. Pointing S. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol.
2001; 57(1): 20-33.
12. Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC. Degradation of polycyclic
aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard
Mater. 2011; 185(1): 212-219.
13. Cui Z, Xu G, Gao W, Li Q, Yang B, Yang G, Zheng L. Isolation and characterization of
Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and
fluoranthene by their syntrophic association with Marinobacter strains. Int Biodeterior
Biodegrad. 2014; 91: 45-51.
14. Hui W, Haiyan Z, Yong HUANG TF. Isolation and degradation characteristics of a HMW
-PAHs degrading halophilic strain. Tsinghua Sci Technol. 2015; 55(1): 87-92.
15. Gomes M, Gonzales-Limache E, Sousa S, Dellagnezze B, Sartoratto A, Silva L, Gieg L,
Valoni E, Souza R, Torres A. Exploring the potential of halophilic bacteria from oil terminal
environments for biosurfactant production and hydrocarbon degradation under high-salinity
conditions. Int Biodeterior Biodegrad. 2018; 126: 231-242.
16. Hadibarata T, Khudhair AB, Kristanti RA, Kamyab H. Biodegradation of pyrene by
Candida sp. S1 under high salinity conditions. Bioprocess Biosyst Eng. 2017; 40(9):
1411-1418.
17. u u h h u O’ v . L
in fungal biology: current methods in fungal biology: Springer Science & Business Media;
2012.
18. Rahman K, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat I. Towards efficient
crude oil degradation by a mixed bacterial consortium. Bioresour Technol. 2002; 85(3):
257-261.
19. Heidarytabar R, Azin E, Moghimi H. Introduction of halotolerant Mucor circinelloides
UTMC 5032 for bioremediation crude oil hydrocarbons. Biol J Microorganism. 2017; 6(21):
31-45.
20. Hesham AE-L, Wang Z, Zhang Y, Zhang J, Lv W, Yang M. Isolation and identification of
a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol.
2006; 56(2): 109.
21. Sambrook J. Molecular cloning : a laboratory manual / Joseph Sambrook, David W.
Russell. Russell DW, Cold Spring Harbor L, editors. Cold spring harbor, N.Y: Cold Spring
Harbor Laboratory; 2001.
22. Amberg DC, Burke DJ, Strathern JN. Methods in Yeast Genetics: A cold spring harbor
laboratory course manual, 2005 Edition (Cold Spring). 2005.
23. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S. Petroleum and
polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in
Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol.
2012; 112: 83-90.
24. Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FA, Maria do Carmo
RP, Bento FM. Biodegradation potential of oily sludge by pure and mixed bacterial cultures.
Bioresour Technol. 2011; 102(23): 11003-11010.
25. Juckpech K, Pinyakong O, Rerngsamran P. Degradation of polycyclic aromatic
hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp.
T20. Sci Asia. 2012; 38: 147.
26. Singh H. Mycoremediation: fungal bioremediation: John Wiley & Sons; 2006.
27. Cerniglia CE. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and
future applications in bioremediation. J Ind Microbiol Biotechnol. 1997; 19(5): 324-333.
28. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J. Oxidative
degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus
D1 in the presence of synthetic mediators. Enzyme Microb Technol. 2006; 39(6): 1242-1249.
29. Deng Y, Zhang Y, Hesham AE-L, Liu R, Yang M. Cell surface properties of five
polycyclic aromatic compound-degrading yeast strains. Appl Microbiol Biotechnol. 2010; 86
(6): 1933-1939.
30. Chen B, Wang Y, Hu D. Biosorption and biodegradation of polycyclic aromatic
hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J Hazard Mater. 2010;
179(1): 845-851.
31. Arun A, Eyini M. Comparative studies on lignin and polycyclic aromatic hydrocarbons
degradation by basidiomycetes fungi. Bioresour Technol. 2011; 102(17): 8063-8070.
32. Ting W, Yuan S, Wu S, Chang B. Biodegradation of phenanthrene and pyrene by
Ganoderma lucidum. Int Biodeterior Biodegrad. 2011; 65(1): 238-242.
33. Ghosh I, Mukherji S. Diverse effect of surfactants on pyrene biodegradation by a
Pseudomonas strain utilizing pyrene by cell surface hydrophobicity induction. Int Biodeterior
Biodegrad. 2016; 108: 67-75