فراوانی ژن های papA، papC و الگوی مقاومت آنتی بیوتیکی در سویه های اشریشیا کلی عامل عفونت ادراری
محورهای موضوعی : میکروب شناسی پزشکیمریم قلندری شمامی 1 , محسن میرزایی 2 , شهین نجار پیرایه 3
1 - کارشناس ارشد، گروه میکروب شناسی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد
2 - استادیار، گروه علوم آزمایشگاهی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد
3 - دانشیار، گروه باکتری شناسی پزشکی، دانشکده پزشکی، دانشگاه تربیت مدرس، تهران
کلید واژه: مقاومت آنتی بیوتیکی, اشریشیاکلی, عفونت مجاری ادراری, ژن papA, ژن papC,
چکیده مقاله :
سابقه و هدف: عفونت دستگاه ادراری یکی از رایج ترین عفونت های باکتریایی در انسان است و شایع ترین عامل اتیولوژیک آن باکتری اشریشیا کلی می باشد. هدف از این مطالعه بررسی الگوی مقاومت جدایه های اشریشیا کلی عامل عفونت ادراری در شهر بروجرد، به تعدادی از آنتی بیوتیک های رایج و فراوانی ژن های papA و papC در میان آن ها می باشد. مواد و روش ها: در یک مطالعه مقطعی توصیفی، تعداد 150 جدایه اشریشیا کلی از بیماران مبتلا به عفونت ادراری مراجعه کننده به بیمارستان امام (ره) شهرستان بروجرد جمع آوری و با آزمایش های افتراقی رایج تعیین هویت شدند. مقاومت آنتی بیوتیکی جدایه ها علیه 13 آنتی بیوتیک رایج با استفاده از روش انتشار از دیسک طبق دستورالعمل های CLSI بررسی شد. حضور ژن های papA و papC با روش واکنش زنجیره ای پلی مراز (PCR) ارزیابی گردید. یافته ها: در جدایه های مورد بررسی، بیشترین مقاومت نسبت به آنتی بیوتیک آمپی سیلین 127 (84.7%) و کمترین مقاومت نسبت به آنتی بیوتیک نیتروفورانتوئین 8 (5.3%) مشاهده گردید. همچنین میزان فراوانی ژن های papA و papC در جدایه های مورد بررسی، به ترتیب 32 (21.3%) و 72 (48%) تعیین شد. نتیجه گیری: نتایج نشان دهنده سیر صعودی مقاومت جدایه های پاتوژن ادراری اشریشیاکلی به اکثر آنتی بیوتیک ها و فراوانی نسبتاً بالای اپرون pap در این جدایه ها بود. از این رو تحقیقات بیشتر در مورد عوامل بیماری زایی و الگوی مقاومت آنتی بیوتیکی این باکتری ها می تواند نقش موثری در درمان عفونت های ادراری داشته باشد.
Background & Objectives: Urinary tract infection (UTI) is a common bacterial infection in humans. Uropathogenic Escherichia coli (UPEC) strains are one of the etiologic reason for UTIs. The purpose of this study is evaluation of bacterial resistance to commonly used antibiotics and the prevalence of papaA and papC genes among uropathogenic E. coli. Materials & Methods: This cross-sectional study was carried out on 150 isolates E. coli collected from patients with UTIs referred to Imam Khomeini Hospital in Boroujerd. Antimicrobial susceptibility test was performed for all isolates against 13 antibiotics according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Then, prevalence of papA and papC genes was examined by PCR method. Results: The highest and lowest rates of antibiotic resistance belonged to ampicillin 127 (84.7%) and nitrofurantoin (3.5%). Also, the prevalence of papA and papC genes was 32 (21.3%) and 72 (48%), respectively. Conclusion: These results shows increases in the antibiotic resistance in pathogen E. coli and high levels of pap operon in these strains. Based on these results, further investigations on the bacterial virulence and the antimicrobial resistance patterns can improve the treatment of urinary infections.
1. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012; Article ID 681473. doi:10.1155/2012/681473
2. Slavchev G. Virulence of uropathogenic Escherichia Coli. Culture Collection. 2009; 6(4): 3-9.
3. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; (2): 123-140.
4. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis. 2013; 17(6): 450-453.
5. Wullt B, Bergsten G, Connell H, Rollano P, Gebretsadik N, Hull R. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Molecular Microbiol. 2000; 38(3): 456-464.
6. Tiba MR, Yano T, Leite Dda S. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis. Rev Inst Med Trop Sao Paulo. 2008; 50(5): 255-260.
7. Yamamoto S. Molecular epidemiology of uropathogenic Escherichia coli. J Infect Chemother 2007; 13(2): 68-73.
8. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G. The gal (alpha 1-4) gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA. 1994; 91(25): 11889-11893.
9. Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/ sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother. 2006; 57(2): 204-211.
10. Da Silva GJ, Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012; 3(1): 18-28.
11. Lau SM, Peng MY, Chang FY. Resistance rates to commonly used antimicrobials among pathogens of both bacteremic and non-bacteremic community-aacquired urinary tract infection. J Microbiol Immuno Infect. 2004; 37(3): 185-191.
12. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott's diagnostic microbiology. 12th ed. St. Louis: Mosby Elsevier, 2007.
13. Performance standards for antimicrobial susceptibility testing; 21th informational supplement. Clinical and Laboratory Standards Institute Wayne PM-S.
14. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000; 181(1): 261-272.
15. Goetz GS, Mahmood A, Hultgren SJ, Engle MJ, Dodson K, Alpers DH. Binding of pili from uropathogenic Escherichia coli to membranes secreted by human colonocytes and enterocytes. Infect Immunity. 1999; 67(11): 6161-6163.
16. Schilling JD, Hultgren SJ. Recent advances into the pathogenesis of recurrent urinary tract infections: the bladder as a reservoir for uropathogenic Escherichia coli. Int J Antimicrob Agents. 2002; 19(6): 457-460.
17. Justyna B, Olga S, and PB. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012; Article ID 681473. doi:10.1155/2012/681473
18. Asadi S, Kargar M, Solhjoo K, Najafi A, Ghorbani-Dalini S. The association of virulence determinants of uropathogenic Escherichia coli with antibiotic resistance. Jundishapur J Microbiol. 2014; 7(5): e9936. [In Persian]
19. Farshad S, Emamghoraishi F, Japoni A. Association of virulent genes hly, sfa, cnf-1 and pap with antibiotic sensitivity in Escherichia coli strains isolated from children with community-acquired UTI. Iran Red Crescent Med J. 2010; 12(1): 33-37. [In Persian]
20. Rahdar M, Rashki A, Miri H. Comparison of the common adhesion coding operons distribution in uropathogenic and phylogenetic group B2 and A Escherichia coli isolates. Avicenna J Clin Microbiol Infect. 2014; 1(3): e22981. [In Persian]
21. Zhao L, Gao S, Huan H, Xu X, Zhu X, Yang W. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiol. 2009; 155(Pt 5): 1634-1644.
22. Katouli M, Brauner A, Haghighi LK, Kaijser B, Muratov V, M¨ollby R. Virulence characteristics of Escherichia coli strains causing acute cystitis in young adults in Iran. J Infect. 2005; 50: 312-321. [In Persian]
23. Maynard C, Bekal S, Sanschagrin F. Heterogeneity among virulence and antimicrobial resistance gene profiles of extra-intestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol. 2004; 42: 5444-5452.
24. Vranes J, Sch¨onwald S, Zagar Z. Relation between P-fimbriae and resistance to amoxicillin, carbenicillin and tetracycline in uropathogenic strains of Escherichia coli. Lijec Vjesn. 1994; 116: 178-181. [In Croatian]
25. Arisoy M, Yousefi Rad A, Akın A, Akar N. Relationship between susceptibility to antimicrobials and virulence factors in paediatric Escherichia coli isolates. Int J Antimicrob Agents. 2008; 31 Suppl 1:S4-8.
_||_
1. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012; Article ID 681473. doi:10.1155/2012/681473
2. Slavchev G. Virulence of uropathogenic Escherichia Coli. Culture Collection. 2009; 6(4): 3-9.
3. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; (2): 123-140.
4. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis. 2013; 17(6): 450-453.
5. Wullt B, Bergsten G, Connell H, Rollano P, Gebretsadik N, Hull R. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Molecular Microbiol. 2000; 38(3): 456-464.
6. Tiba MR, Yano T, Leite Dda S. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis. Rev Inst Med Trop Sao Paulo. 2008; 50(5): 255-260.
7. Yamamoto S. Molecular epidemiology of uropathogenic Escherichia coli. J Infect Chemother 2007; 13(2): 68-73.
8. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G. The gal (alpha 1-4) gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA. 1994; 91(25): 11889-11893.
9. Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/ sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother. 2006; 57(2): 204-211.
10. Da Silva GJ, Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012; 3(1): 18-28.
11. Lau SM, Peng MY, Chang FY. Resistance rates to commonly used antimicrobials among pathogens of both bacteremic and non-bacteremic community-aacquired urinary tract infection. J Microbiol Immuno Infect. 2004; 37(3): 185-191.
12. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott's diagnostic microbiology. 12th ed. St. Louis: Mosby Elsevier, 2007.
13. Performance standards for antimicrobial susceptibility testing; 21th informational supplement. Clinical and Laboratory Standards Institute Wayne PM-S.
14. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000; 181(1): 261-272.
15. Goetz GS, Mahmood A, Hultgren SJ, Engle MJ, Dodson K, Alpers DH. Binding of pili from uropathogenic Escherichia coli to membranes secreted by human colonocytes and enterocytes. Infect Immunity. 1999; 67(11): 6161-6163.
16. Schilling JD, Hultgren SJ. Recent advances into the pathogenesis of recurrent urinary tract infections: the bladder as a reservoir for uropathogenic Escherichia coli. Int J Antimicrob Agents. 2002; 19(6): 457-460.
17. Justyna B, Olga S, and PB. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012; Article ID 681473. doi:10.1155/2012/681473
18. Asadi S, Kargar M, Solhjoo K, Najafi A, Ghorbani-Dalini S. The association of virulence determinants of uropathogenic Escherichia coli with antibiotic resistance. Jundishapur J Microbiol. 2014; 7(5): e9936. [In Persian]
19. Farshad S, Emamghoraishi F, Japoni A. Association of virulent genes hly, sfa, cnf-1 and pap with antibiotic sensitivity in Escherichia coli strains isolated from children with community-acquired UTI. Iran Red Crescent Med J. 2010; 12(1): 33-37. [In Persian]
20. Rahdar M, Rashki A, Miri H. Comparison of the common adhesion coding operons distribution in uropathogenic and phylogenetic group B2 and A Escherichia coli isolates. Avicenna J Clin Microbiol Infect. 2014; 1(3): e22981. [In Persian]
21. Zhao L, Gao S, Huan H, Xu X, Zhu X, Yang W. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiol. 2009; 155(Pt 5): 1634-1644.
22. Katouli M, Brauner A, Haghighi LK, Kaijser B, Muratov V, M¨ollby R. Virulence characteristics of Escherichia coli strains causing acute cystitis in young adults in Iran. J Infect. 2005; 50: 312-321. [In Persian]
23. Maynard C, Bekal S, Sanschagrin F. Heterogeneity among virulence and antimicrobial resistance gene profiles of extra-intestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol. 2004; 42: 5444-5452.
24. Vranes J, Sch¨onwald S, Zagar Z. Relation between P-fimbriae and resistance to amoxicillin, carbenicillin and tetracycline in uropathogenic strains of Escherichia coli. Lijec Vjesn. 1994; 116: 178-181. [In Croatian]
25. Arisoy M, Yousefi Rad A, Akın A, Akar N. Relationship between susceptibility to antimicrobials and virulence factors in paediatric Escherichia coli isolates. Int J Antimicrob Agents. 2008; 31 Suppl 1:S4-8.