ارائه مدل بهینه ساز هزینه های کنترل موجودی دستگاه های خودپرداز شهر تهران
محورهای موضوعی : حسابداری مدیریتعلیرضا آقا قلیزاده سیار 1 * , حسین شیرازی 2 , مهدی ایزدیار 3 , محمدمهدی فتاح دماوندی 4
1 - دکتری مدیریت صنعتی ، دانشگاه آزاد اسلامی ، واحد علوم و تحقیقات ، تهران ، ایران
2 - استادیار و عضو هیات علمی گروه مدیریت، واحد قم، دانشگاه آزاد اسلامی، قم، ایران.
3 - دکتری مدیریت صنعتی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
4 - دانشجوی کارشناسی ارشد مدیریت صنعتی، دانشگاه امام صادق، تهران، ایران.
کلید واژه: کنترل موجودی, مدلسازی, دستگاه خودپرداز, داده کاوی,
چکیده مقاله :
ازآنجا که مدیریت هزینه ها یکی از مهمترین وظایف سازمان ها هستند ، مدیریت هزینه های سیستم کنترل موجودی دستگاههای خود پرداز نیز یکی از اساسی ترین وظایف بانکها بشمار میروند. این مقاله به دنبال ارائه مدلی پویا و بهینه برای کنترل هزینه های موجودی دستگاههای خودپرداز، با توجه به شرایط زمانی و مکانی هر دستگاه میباشد .بنابر این از داده های کل جامعه آماری، مربوط به بانک متبوع در شهر تهران که شامل 368 دستگاه خودپرداز می گردد استفاده شد . بررسی رفتار دستگاه ها در بازه زمانی سه ماهه در سال 1396 انجام شده است. این مدل با خوشه بندی داده های آماری در ابعاد زمانی و مکانی موفق به یادگیری الگوی موجود در کلان داده ها شده و بر همین مبنا درخت تصمیم ارائه شده قادر به پیش بینی تعداد مراجعه کننده به هر دستگاه می باشد . سپس با استفاده از تابع هزینه ها برای سناریوهای بدست آمده هزینه های سیستم مشخص میگردند.هزینه ی کل سیستم شامل مجموع هزینه های نگهداری پول ، کمبود پول و سفارش دهی پول برای هر دستگاه میباشد . در نهایت با ارائه الگوی بهینه سازی شده کنترل موجودی برای هر سناریو، هزینه های کل سیستم به طور میانگین 5/16 درصد ، یعنی به مقدار 38 میلیون تومان در ماه کاهش پیدا میکند.
Since cost management is one of the most important tasks of organizations, cost management of inventory control system of ATMs is also one of the most basic tasks of banks. This article seeks to provide a dynamic and optimal model for controlling inventory costs of ATMs, according to the time and place of each device. Therefore, all data, related to the relevant bank in Tehran, which includes 368 ATMs, was used. Investigating the behavior of devices in the three-month period in 1396 has been done. This model has succeeded in learning the existing pattern in big data by clustering statistical data in place and time dimensions, and based on this, the proposed decision tree is able to predict the number of customers to each device. Then, using the cost function for the obtained scenarios, the system costs are determined. The total cost of the system includes the total hold cost of money, shortage cost and orderig cost for each device. Finally, by providing an optimized inventory control model for each scenario, the total system costs are reduced by an average of 16.5 percent, or 38 million tomans per month.
* محرابیان، س.، ساعتی، ص.، هادی، ع.، (1390). ارزیابی کارایی شعب بانک اقتصادی نوین با ترکیبی از روش شبکه عصبی و تحلیل پوششی داده ها. تحقیق در عملیات و کاربردهای آن. 8 (4)، 39-29.
* ناجی عظیمی، ز.، قربان پور، الف.، (1394). به کارگیری الگوریتم بهینه سازی ازدحام ذرات برای خوشه بندی مشتریان. تحقیق در عملیات و کاربردهای آن. 12 (1)، 47-33.
* علیزاده، س.، ملک محمدی، س.، (1393). داده کاوی و کشف دانش گام به گام با نرم افزار Clementine. چاپ سوم، تهران. انتشارات دانشگاه خواجه نصیرالدین طوسی.
* نصیری، م.، اسماعیلی، الف.، مینایی، ب.، مزینی، ن.، (1390). پیشنهاد شیوه ای مبتنی بر الگوریتم PSO چند هدفه جهت استخراج قوانین انجمنی در داده کاوی. تحقیق در عملیات و کاربردهای آن. 8 (4)، 48-41.
* آذر، ع.، مهدوی راد، ع.، موسی خانی، م.، (1394). طراحی مدل ترکیب داده کاوی و تصمیم- گیری چند معیاره (مورد مطالعه، بانک اطلاعات یارانه های مرکز آمار ایران). تحقیق در عملیات و کاربردهای آن 12 (1)، 111-95.
* حاجی مولانا، م.، معمارپور، م.، سجادی، خ.، (1396). طراحی مدل پیش بینی تقاضای پول در دستگاه های خودپرداز شهر تهران (مطالعه موردی:بانک شهر). نشریه تخصصی مهندسی صنایع 51 (3)، 281-295.
* تقوی فرد،م.، خاتمی، م.، سجادی، خ.، (1395). افزایش میزان رضایت شهروندان از دستگاه های خودپرداز بانک شهر وکاهش هزینه های اقصادی بانک با به کارگیری مدل کنترل موجودی شبیه سازی شده. اقتصاد و مدیریت شهری 16 (4)، 18-1
* Altunoglu, Y. (2010). “Cash inventory management at automated teller machines under incomplete information”, MSc Thesis of Turkey BILKENT University, PP. 25–40.
* Davies, D.L. and Bouldin, D.W. (1979) “A cluster separation measure”, IEEE Transactions on Pattern Analysis and Machine, 24(2), pp. 224-227.
* Nagi, E.,(2017), The application of data mining techniques in financial fraud detection. decision support system, 50: 559-569.
* Hipp, J., Guntzer, V., (2014).Data quality mining.DMKD.
* Zakarian, A., (2015). Mining warranty data in Manufacturing industry. University of Michigan-Dearbon.
* Punj, G.N. and Stewart, D.W. (1983) “Cluster analysis in marketing redearch: Review and suggestions for application”,Journal of Marketing Research,20,pp.134-148.
* McQueen, J.B. (1967)”Some methods for classi_cation and analysis of multivariate observations”, Proceeding of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, pp. 281-297.
* Johnson, R.A. and Wichern, D.W. (2007), Applied Multivariate Statistical Analysis, 6th Edn., Pearson Prentice Hall,USA.
* Kim, K.J. and Ahn, H. (2008). “A recommender system using GA Kmeans clustering in an online shopping market”, Expert Systems with Applications, 34, pp. 1200-1209.
* Kolos, C., Ágoston, S., Benedek, G., and Gilányi, Z. (2016). “Pareto improvement and joint cash management optimization for banks and cash-in-transit firms”, European Journal of Operational Research, PP. 1–9.
* Sajjadi, Kh., and Azimi, P. (2014). “Optimizing the number of bank branches equipments by simulation and annealing algorithm”, Journal of Management Researches in Iran, Vol. 18, No. 4, PP. 65–86.
* Naghshineh, N., Hanifi, F., and Kordloei, H. (2013). “Management of bank assets and liabilities with the help of linear multi-objective programming by econometric simulation, Case study: Bank X”, Journal of Financial Engineering and management of securities (Portfolio Management): Vol. 4, No. 14, PP. 61–81.
* Gunase karan, s., chandrasekaran, c., (2016). A survey on automobile Induster using data mining teachniques. International Jornal of science and advance technology,1(4).
* Liang, Y., (2018). Integration of data morning techniques to analyze customer value for the automotive maintenance industry. Expert system and applications. 37: 4789-7496.
* Coenen, F., (2016). Data mining: past, present and future. The Knowledge Engineering Review.
* 26(1): 25-29.
* Kavand, M. (2010). “Design of assets liabilities optimal management mathematical model in non-usury banking - MCDM approach, case study: Iran Tose’e saderat bank”, MSc Thesis submitted by help doctor Adel Azar, PP. 35–45.
* Taleeizadeh, A., and Salehi, A. (2015). “Stochastic inventory control model under the policy credit purchases”, Journal of Industrial Engineering, Vol. 49, No.1, PP. 69–78.
* Axsäter, S. (2015). Inventory control”, Springer,Vol. 225, PP. 42,43.
* Smitus, R., Dilijonas, D., Bastian, L., Friman, J., and Drobinov, P. (2007). “Optimization of cash management for ATM network”, Information Technology And Control, Vol. 36, No. 1, PP. 117–121.
* Wagner, M. (2007) “The optimal cash deployment strategy-Modeling a network of Automated teller machines”, MSc Thesis, Hanken Swedish School of Economics and Business Administration, PP. 70–80.
* Salimifard, Kh., and Farajzadeh, S. (2012), “Using monte carlo simulation to determine the amount of money in the ATM and the improvement of customer satisfaction”, Proceeding of the 3rd Annual
* European Decision Science Institute Conference, 24–27 June, Istanbul, Turkey.
* Supatchaya, Ch., Peerayuth, Ch., Juta, P., and John, K. (2013). “An optimization-based heuristic for a capacitated lot-sizing model in an automated teller machines network”, Journal of Mathematics and Statistics, Kasetsart University, Chatuchak, Bangkok, Thailand, Vol. 9, No. 4, PP. 283–288.
* Baker, T., Vaidyanathan, J., and Ashley, N. (2012). “A data-driven inventory control policy for cash logistics operations: An exploratory case study application at a financial institution”, Decision Sciences, Vol. 44, No. 1, PP. 205–226.
* Ekinci, Y., Lu, J. Ch., and Duman, E. (2014). “Optimization of ATM cash replenishment with group-demand forecasts”, Expert Systems with Applications, doi: http://dx.doi.org, Vol. 42, No. 7, PP. 3480–3490.
_||_