The $n^{th}$ commutativity degree of semigroups
Subject Areas : Group theory
1 - Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords: commutativity degree, Probability, Quasi-commutative semigroups,
Abstract :
For a given positive integer $n$, the $n^{th}$ commutativity degree of a finite non-commutative semigroup $S$ is defined to be the probability of choosing a pair $(x,y)$ for $x, y \in S$ such that $x^n$ and $y$ commute in $S$. If for every elements $x$ and $y$ of an associative algebraic structure $(S,.)$ there exists a positive integer $r$ such that $xy =y^{r}x$, then $S$ is called quasi-commutative. Evidently, every abelian group or commutative semigroup is quasi-commutative. In this paper, we study the $n^{th}$ commutativity degree of certain classes of quasi-commutative semigroups. We show that the $n^{th}$ commutativity degree of such structures is greater than $\dfrac{1}{2}$. Finally, we compute the $n^{th}$ commutativity degree of a finite class of non-quasi-commutative semigroups and we conclude that it is less than $\dfrac{1}{2}$.
[1] H. Ayik, C. M. Campbell, J. J. O’Connor, N. Ruskuc, The semigroup efficiency of groups and monoids, Math. Proc. Royal Irish Acad. 100A (2000), 171-176.
[2] C. M. Campbell, J. D. Mitchell, N. Ruskuc, Comparing semigroup and monoid presentations for finite monoids, Monatsh. Math. 134 (2002), 287-293.
[3] C. M. Campbell, J. D. Mitchell, N. Ruskuc, On defining groups efficiently without using inverses, Math. Proc. Cambridge Philos. Soc. 133 (2002), 31-36.
[4] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, Fibonacci semigroups, J. Pure Appl. Algebra. 94 (1994), 49-57.
[5] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, On semigroups defined by Coxeter type presentations, Proc. Royal Soc. Edinburgh. 125A (1995), 1063-1075.
[6] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, On subsemigroups of finitely presented semi-groups, J. Algebra. 180 (1996), 1-21.
[7] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, Semigroup and group presentations, Bull. London Math. Soc. 27 (1995), 46-50.
[8] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, Y. Unlu, Certain one-relator products of semigroups, Comm. Algebra. 23(14) (1995), 5207-5219.
[9] C. M. Campbell, E. F. Robertson, R. M. Thomas, On a class of semigroups with symmetric presentations, Semigroup Forum. 46 (1993), 286-306.
[10] C. M. Campbell, E. F. Robertson, R. M. Thomas, Semigroup presentations and number sequences, in: Applications of Fibonacci numbers, eds. G. E. Bergum et al. 5 (1993), 77-83.
[11] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups I, Amer. Math. Soc. Surveys. 7, Providence, 1961.
[12] H. Doostie, M. Maghasedi, Certain classes of groups with commutativity degree d(G) < 0.5, Ars Combinatoria. (2008), 263-270.
[13] M. Hashemi, M. Polkouei, The n-th commutativity degree of a finite semigroup, Inter. J. Math. 8 (2014), 198-200.
[14] N. Hosseinzadeh, H. Doostie, Examples of non-quasicommutative semigroups decomposed into union of groups, Bull. Iranian Math. Soc. 2 (2015), 483-487.
[15] J. D. Mitchell, Extremal Problems in Combinatorial Semigroup Theory, Ph.D. Thesis, University of St. Andrews, 1998.
[16] N. P. Mukherjee, Quasi-commutative semigroups I, Czechoslovak Math. J. 97 (1972), 449-453.
[17] B. Pondelicek, Note on Quasi-Hamiltonian semigroups, Casopis Pro Pestovani Matematiky. 110 (1985), 356-358.
[18] E. F. Robertson, Y. Unlu, On semigroup presentations, Proc. Edinburgh Math. Soc. 36 (1993), 55-68.
[19] N. Ruskuc, Semigroup Presentations, Ph.D. Thesis, University of St. Andrews, 1995.
[20] K. P. Shum, X. M. Ren, On super Hamiltonian semigroups, Czechoslovak Math. J. 54 (2004), 247-252.
[21] M. R. Sorouhesh, H. Doostie, Quasi-commutative semigroups of finite order related to Hamiltonian groups, Bull. Korean Math. Soc. 1 (2015), 239-246.