Connected and Hyperconnected Generalized Topological Spaces
Subject Areas : History and biographyI. Basdouri 1 , R. Messaoud 2 , A. Missaoui 3
1 - Departement de Mathematiques, Faculte des Sciences de Gafsa,
Zarroug 2112 Gafsa, Tunisie
2 - Departement de Mathematiques, Faculte des Sciences de Gafsa,
Zarroug 2112 Gafsa, Tunisie
3 - Departement de Mathematiques, Faculte des Sciences de Gafsa,
Zarroug 2112 Gafsa, Tunisie
Keywords: Generalized topology, connected, m-structure, weak structure, g-closed,
Abstract :
A. Csaszar introduced and extensively studied the notion of generalized opensets. Following Csazar, we introduce a new notion hyperconnected. We study some specificproperties about connected and hyperconnected in generalized topological spaces. Finally, wecharacterize the connected component in generalized topological spaces.
[1] E. Bouacida, O. Echi, E. Salhi, Topologies associees a une relation binaire et relation binaire spectrale. Bollettino della Unione Mathematica Italiana (7), 10-B (1996), 417-439.
[2] E. Bouassida, B. Ghanmi, R. Messaoud, A. Missaoui, Generalized superconnectedness, Journal of Linear and Topological Algebra, 04 (04) (2015), 267-273.
[3] E. CECH, Topologicke prostory. Cas. pest, mat., 66 (1936-37), 225-264.
[4] A. Csazar, Generalized topology, generalized continuity, Acta math. Hungar., 96 (2002), 351-357.
[5] A. Csazar, Generalized open sets in generalized topologies, Acta math. Hungar., 106 (2005), 53-66.
[6] A. Csazar, Grundlagen der allgemeinen Topologie. Budapest 1963.
[7] A. Csazar, Weak structres, Acta math. Hungar 131 (1-2) (2011), 193-195.
[8] A. Csazar, $gamma$-connected sets, Acta Math. Hungar. 101 (2003), 273-279.
[9] A. Csazar, Normal generalized topologies, Acta Math. Hungar. 115 (4) (2007), 309-313.
[10] A. Csazar, $delta$-and $theta$-modifications of generalized topologies, Acta Math. Hungar. 120 (2008), 275-279.
[11] F. Hausdor, Gestufte Raume. Fundamenta mathematicae, 25 (1935), 486-502.
[12] J. L. Kelley, General Topology. D. Van Nostrand company, New York 1955.
[13] W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128 (2009), doi: 10.1007/s10474-009-9037-6.
[14] D. Jayanthi, Contra Continuity on generalized topological spaces, Acta Math. Hungar., 137 (4) (2012), 263-
271.