ارزیابی روش های تجزیه سیگنال الکترومیوگرام سطحی در طراحی سیستم تشخیص حرکتهای دست
محورهای موضوعی : پردازش سیگنالهای پزشکی
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: ماشین بردار پشتیبان, تجزیه موجک, دست مصنوعی, تجزیه مد تجربی, سیگنال الکترومیوگرام سطحی,
چکیده مقاله :
یک روش برای تعیین فرمانهای حرکتی برای کنترل پروتزهای دست، استفاده از الگوهای سیگنال الکترومایوگرام سطحی (sEMG) است. با توجه به ماهیت تصادفی و غیرایستای سیگنال ، ایده استفاده از اطلاعات سیگنال در بازه های زمانی کوچک مورد بررسی قرار گرفت. در این مطالعه با هدف تشخیص دقیق تر و سریع تر حرکت های دست، دو روش تجزیه سیگنال شامل تبدیل موجک گسسته (DWT) و تجزیه مد تجربی (EMD) ارزیابی شده اند. سیگنالهای مجموعه داده نیناپرو DB1 که از 27 فرد سالم در حین انجام حرکت های دست و انگشتان استخراج شده اند، برای طراحی سیستم به کار رفته است. ویژگی های زمانی ساده با قابلیت محاسبه سریع برای هر زیرباند از سیگنال های تجزیه شده به کار گرفته شدند. همچنین ماشین بردار پشتیبان (SVM) با استفاده از توابع کرنل مختلف به عنوان طبقه بندی کننده مورد استفاده قرار گرفت. نتایج به دست آمده نشان می دهد، استفاده از روش های تبدیل موجک گسسته و تجزیه مد تجربی با قابلیت دسترسی به اطلاعات زیربازه های زمانی و فرکانسی سیگنال ها، نتایج بهتری در شناسایی حرکت های دست در مقایسه با مطالعات گذشته ارایه می کند. با روش تجزیه مد تجربی و تعداد هشت تابع مد ذاتی، بالاترین دقت تشخیص با مقدار 3/83 درصد برای شش حرکت بهدست آمد. همچنین روش تبدیل موجک گسسته با موجک مادر بای ارتوگونال 5/5 در پنج سطح تجزیه، دقت تشخیص 80 درصد را برای ده حرکت و با موجک مادر کویفلت 2 در شش سطح تجزیه، دقت 33/83 درصد را برای شناسایی هشت حرکت کسب کرد. نتایج به دست آمده عملکرد بهتر روش تجزیه موجک در مقایسه با تجزیه مد تجربی را برای طراحی سیستم شناسایی حرکت های دست با استفاده از الگوهای سیگنال الکترومایوگرام سطحی نشان می دهد.
One method for determining motor commands to control hand prostheses is to use surface electromyogram (sEMG) signal patterns. Due to the random and non-stationary nature of the signal, the idea of using signal information in small time intervals was investigated. In this study, with the aim of more accurate and faster detection of hand movements, two signal decomposition methods, namely discrete wavelet transform (DWT) and empirical mode decomposition (EMD) were evaluated. The sEMG signals of the Ninapro-DB1 dataset, which were extracted from 27 healthy subjects while performing hand and finger movements, were used to design the system. Simple time domain features with fast calculation capability were extracted for each subband of the decomposed signals. Also, support vector machine (SVM) using different kernel functions was applied as a classifier. The results show that the use of DWT and EMD methods with the ability to access the information of time and frequency sub-intervals of the signals, provides better results in identifying hand movements compared to previous studies. With the EMD method and eight intrinsic mode functions (IMF), the highest recognition accuracy of 83.3% was obtained for six movements. Also, the DWT with the Bior5.5 mother wavelet and five levels of decomposition, achieved 80% recognition accuracy for ten movements and with the Coif2 mother wavelet and six levels of decomposition, the accuracy was 83.33% for eight movements. The results show the better performance of the DWT decomposition method compared to EMD for the design of the hand movement recognition system using sEMG signal patterns.
[1] M. Khezri, M. Jahed, "An inventive quadratic time-frequency scheme based on wigner-ville distribution for classification of sEMG signals", Proceeding of the IEEE/TTAB, pp. 261-264, Tokyo, Japan, Nov. 2007 (doi: 10.1109/ITAB.2007.4407397).
[2] S. Mao, J. Li, A. Guo, T. Zhao, J. Zhang, "An active multielectrode array for collecting surface electromyogram signals using a-IGZO TFT technology on polyimide substrate", IEEE Trans. on Electron Devices, vol. 67, no. 4, pp. 1613-1618, April 2020 (doi: 10.1109/TED.2020.2974971).
[3] R. Chowdhury, M. Raez, M. Ali, A. Bakar, K. Chellappan, T. Chang, "Surface electromyography signal processing and classification techniques", Sensors, vol. 13, no. 9, pp. 12431–12466, Sept. 2013 (doi: 10.3390/s130912431).
[4] N. Behzadfar, “A brief overview on analysis and feature extraction of electroencephalogram signals”, Signal Processing and Renewable Energy, vol. 6, no. 1, pp. 39-64, March 2022 (dor: 20.1001.1.25887327.2022.6.1.3.9).
[5] J. Lopes, M. Simão, N. Mendes, M. Safeea, J. Afonso, P. Neto, "Hand/arm gesture segmentation by motion using IMU and EMG sensing", Procedia Manufacturing, vol. 11, pp. 107–113, Sept. 2017 (doi: 10.1016/j.promfg.2017.07.158).
[6] M. Tavakoli, C. Benussi, P. Alhais Lopes, L. B. Osorio, A.T. Almeida, "Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier", Biomedical Signal Processing and Control, vol. 46, pp. 121–130, Sept. 2018 (doi: 10.1016/j.bspc.2018.07.010).
[7] F. Duan, L. Dai, "Recognizing the gradual changes in sEMG characteristics based on incremental learning of wavelet neural network ensemble", IEEE Trans. on Industrial Electronics, vol. 64, no. 5, pp. 4276–4286, May 2017 (doi: 10.1109/TIE.2016.2593693).
[8] A. Islam, M.S. Alam, "Classification of electromyography signals using support vector machine", Dujase, vol. 4, no. 1, pp. 45–52, Jan. 2017.
[9] A.D. Bellingegni, E. Gruppioni, G. Colazzo, A. Davalli, R. Sacchetti, E. Guglielmelli, Loredana Zollo, "NLR, MLP, SVM, and LDA: A comparative analysis on EMG data from people with trans-radial amputation", Journal of Neuroengineering and Rehabilitation, vol. 14, no. 82, Aug. 2017 (doi: 10.1186/s12984-017-0290-6).
[10] Y. Li, Q. Zhang, N. Zeng, J. Chen, Q. Zhang, "Discrete hand motion intention decoding based on transient myoelectric signals", IEEE Access, vol. 7, no. 1, pp. 81630–81639, June 2019 (doi: 10.1109/ACCESS.2019.2923455).
[11] S. Shen, K. Gu, X.-R. Chen, M. Yang, "Movements classification of multi-channel sEMG based on CNN and stacking ensemble learning", IEEE Access, vol. 7, pp. 137489–137500, Sept. 2019 (doi: 10.1109/ACCESS.2019.2941977).
[12] J.E. Lara, L.K. Cheng, O. Röhrle, N. Paskaranandavadivel, "Muscle-specific high-density electromyography arrays for hand gesture classification", IEEE Trans. on Biomedical Engineering, vol. 69, no. 5, pp. 1758-1766, May 2022 (doi: 10.1109/TBME.2021.3131297).
[13] F.S. Botros, A. Phinyomark, E.J. Scheme, "Electromyography-based gesture recognition: is it time to change focus from the forearm to the wrist?", IEEE Trans. on Industrial Informatics, vol. 18, no. 1, pp. 174-184, Jan. 2022 (doi: 10.1109/TII.2020.3041618).
[14] M. Atzori, A. Gijsberts, S. Heynen, A. G. M. Hager, O. Deriaz, P. V. D. Smagt, C. Castellini, B. Caputo, H. Müller, "Building the ninapro database: A resource for the biorobotics community", Proceeding of the IEEE/RAS-EMBS, pp. 1258–1265, Rome, Italy, June 2012 (doi: 10.1109/BioRob.2012.6290287).
[15] J. Kevric, A. Subasi, "Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system", Biomedical Signal Processing and Control, vol. 31, pp.398-406, Jan. 2017 (doi: 10.1016/j.bspc.2016.09.007).
[16] L. Chmelka, J. Kozumplik, "Wavelet-based wiener filter for electrocardiogram signal denoising", Proceeding of the IEEE/CIC, pp. 771–774, Lyon, France, Feb. 2005 (doi: 10.1109/CIC.2005.1588218).
[17] M.S. Chaudhary, R.K. Kapoor, A.K. Sharma, "Comparison between different wavelet transforms and thresholding techniques for ECG denoising", Proceeding of the IEEE/ICAETR, pp. 1–6, Unnao, India, Aug. 2014 (doi: 10.1109/ICAETR.2014.7012899).
[18] B.E. Boser, I. Guyon, "A training algorithm for optimal margin classifiers", Proceeding of the AWCLT, pp. 144–152, Pittsburgh Pennsylvania, USA, July 1992 (doi: 10.1145/130385.130401).
[19] S. Karimi-Shahraki, M. Khezri, "Identification of attention deficit Hyperactivity disorder patients using wavelet-based features of EEG signals", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 1-11, December 2021 (in Persian) (dor: 20.1001.1.23223871.1400.12.3.1.1)
[20] G. Mardanian, N. Behzadfar, "A new method for detection of breast cancer in mammography images using a firefly algorithm", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 40, pp. 23-32, March 2020 (in Persian) (dor: 20.1001.1.23223871.1398.10.40.3.3).
[21]M. Dorvashi, N. Behzadfar, G. Shahgholian, “Classification of alcoholic and non-alcoholic individuals based on frequency and non-frequency features of electroencephalogram signal”, Journal Iranian Journal of Biomedical Engineering, vol. 14, no. 2, pp. 121-130, July 2020 (doi: 10.22041/ijbme.2020.119841.1551).
[22] M. Atzori, A. Gijsberts, H. Muller, B. Caputo, "Classification of hand movements in amputated subjects by sEMG and accelerometers", Proceeding of the IEEE/ Engineering in Medicine and Biology Society, pp. 3545–3549, Chicago, Aug. 2014 (doi: 10.1109/EMBC.2014.6944388).
[23] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.G.M. Hager, S. Elsig, G. Giatsidis, F. Bassetto, H. Müller, "Electromyography data for non-invasive naturally-controlled robotic hand prostheses", Scientific Data, vol. 1, no. 1, pp. 1–13, Dec. 2014 (doi: 10.1038/sdata.2014.53).
_||_