کنترل بار فرکانس در یک سیستم قدرت چند ناحیهای با مشارکت منابع انرژی تجدیدپذیر و خودروی الکتریکی با استفاده از کنترلکننده PID مرتبه کسری مبتنی بر شبکه عصبی موجک
محورهای موضوعی : منابع و فن آوری های انرژی های تجدیدپذیرعباسعلی زمانی 1 * , سید محمد کارگر دهنوی 2 , علیرضا رئیسی 3
1 - گروه مهندسی برق- دانشگاه فنی و حرفهای، تهران، ایران
2 - مرکز تحقیقات ریز شبکههای هوشمند- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - گروه مهندسی برق- دانشگاه فنی و حرفهای، تهران، ایران
کلید واژه: توربین بادی, شبکه عصبی موجک, خودرو الکتریکی, کنترلکننده PID مرتبه کسری, نیروگاه خورشیدی-حرارتی, کنترل بار فرکانس,
چکیده مقاله :
با تجدید ساختار سیستم قدرت و ادغام منابع انرژی تجدیدپذیر مختلف با رفتار دینامیکی پیچیده و عدم قطعیتهای عملکردی زیاد، مبحث کنترل بار فرکانس، پیچیدگیهای بیشتری پیدا کرده است. در این مقاله برای یک سیستم قدرت ترکیبی دو ناحیهای که شامل نیروگاه حرارتی با در نظر گرفتن عوامل غیرخطی مانند باند مرده گاورنر و محدودیت میزان تولید و منابع انرژی تجدیدپذیر شامل توربین بادی، نیروگاه خورشیدی-حرارتی، الکترولایزر، پیل سوختی و خودرو برقی پلاگین است، یک ساختار کنترل بار فرکانس تطبیقی مرتبه کسری، مبتنی بر شبکههای عصبی موجک خود بازگشتی و کنترلکننده مرتبه کسری با نام کنترلکننده تناسبی-انتگرالی-مشتقی (PID) مرتبه کسری مبتنی بر شبکه عصبی موجک (AWNNFOPID) پیشنهاد شده است. برای مقایسه عملکرد کنترلکننده AWNNFOPID پیشنهادی چهار سناریو متفاوت در نظر گرفته شده و نتایج با کنترلکنندههای سنتی انتگرال گیر (I)، متناسب-انتگرال گیر (PI)، PID و همچنین با کنترلکننده PID مرتبه کسری (FOPID) بهینه مقایسه شده است. نتایج شبیهسازیها نشاندهنده عملکرد بسیار مناسب کنترلکننده AWNNFOPID پیشنهادی بر اساس شاخصهای عملکردی زمان نشست، زمان صعود، حداکثر فراجهش، حداکثر فروجهش، انتگرال زمانی قدر مطلق خطا (ITAE) و انتگرال قدر مطلق خطا (IAE) در مقایسه با سایر کنترلکننده به کار رفته برای سیستم قدرت مورد مطالعه است.
Restructuring of power systems and integration of different renewable energy sources with complex dynamic behaviors and high structural uncertainties has made the issue of load frequency control more important. For a hybrid power system that includes a thermal power plant taking into account nonlinear limitations such as the governor dead band and generator rate constraints and renewable energy sources including a wind turbine, solar-thermal power plant, electrolyzer, fuel cell, and plug-in electric vehicle, this paper proposes an adaptive wavelet neural network fractional order PID controller (AWNNFOPID) based on self-recursive wavelet neural networks and fractional order PID controller. To compare the performance of the proposed AWNNFOPID controller, four different scenarios are considered and the simulation results are compared with traditional I, PI, and PID controllers as well as with the optimized FOPID controller. The simulation results show that the proposed AWNNFOPID controller has better performances than the other control strategies used for the studied hybrid power system based on performance indicators such as settling time, rise time, maximum overshoot, maximum undershoot, integral time absolute error (ITAE), and integral absolute error (IAE).
[1] H. Bevrani, A. Ghosh, G. Ledwich, "Renewable energy sources and frequency regulation: survey and new perspectives", IET Renewable Power Generation, vol. 4, no. 5, pp. 438-457, Sept. 2010 (doi: 10.1049/iet-rpg.2009.0049).
[2] C.S. Karavas, G. Kyriakarakos, K.G. Arvanitis, G. Papadakis, "A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids", Energy Conversion and Management, vol. 103, pp. 166-179, Oct. 2015 (doi: 10.1016/j.enconman.2015.06.021).
[3] L.C. Saikia, J. Nanda, S. Mishra, "Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system", International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 394-401, March 2011 (doi: 10.1016/j.ijepes.2010.08.036).
[4] A. Yazdizadeh, M.H. Ramezani, E. Hamedrahmat, "Decentralized load frequency control using a new robust optimal MISO PID controller", International Journal of Electrical Power and Energy Systems, vol. 35, no. 1, pp. 57-65, Feb. 2012 (doi: 10.1016/j.ijepes.2011.09.007).
[5] Y.V. Hote, S. Jain, "PID controller design for load frequency control: Past, Present and future challenges", IFAC-PapersOnLine, vol. 51, no. 4, pp. 604-609, Jan. 2018 (doi: 10.1016/j.ifacol.2018.06.162).
[6] J. Sharma, Y.V. Hote, R. Prasad, "PID controller design for interval load frequency control system with communication time delay", Control Engineering Practice, vol. 89, pp. 154-168, Aug. 2019 (doi: 10.1016/j.conengprac.2019.05.016).
[7] A. Rai, D.K. Das, "Optimal PID controller design by enhanced class topper optimization algorithm for load frequency control of interconnected power systems", Smart Science, vol. 8, no. 3, pp. 125-151, July 2020 (doi: 10.1080/23080477.2020.1805540).
[8] V. Veerasamy, N.I.A. Wahab, R. Ramachandran, A. Vinayagam, M.L. Othman, H. Hizam, J. Satheeshkumar, "Automatic load frequency control of a multi-area dynamic interconnected power system using a hybrid PSO-GSA-tuned PID controller", Sustainability, vol. 11, no. 24, Article Number: 6908, Dec. 2019 (doi: 10.3390/su11246908).
[9] R. Alayi, F. Zishan, S. R. Seyednouri, R. Kumar, M. H. Ahmadi, M. Sharifpur, "Optimal load frequency control of island microgrids via a PID controller in the presence of wind turbine and PV", Sustainability, vol. 13, no. 19, pp. 10728, Sept. 2021 (doi: 10.3390/su131910728).
[10] D. Guha, P. K. Roy, S. Banerjee, "Quasi-oppositional JAYA optimized 2-degree-of-freedom PID controller for load-frequency control of interconnected power systems", International Journal of Modelling and Simulation, vol. 42, no. 1, pp. 63-85, Jan. 2022 (doi: 10.1080/02286203.2020.1829444).
[11] I. Podlubny, "Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers", IEEE Transactions on automatic control, vol. 44, no. 1, pp. 208-214, Jan. 1999 (doi: 10.1109/9.739144).
[12] S. Kumar, M. N. Anwar, "Fractional order PID controller design for load frequency control in parallel control structure", Proceeding of the IEEE/UPEC, pp. 1-6, Bucharest, Romania, Sept. 2019 (doi: 10.1109/UPEC.2019.8893500).
[13] A. Kumar, S. Suhag, "Whale optimisation algorithm tuned fractional order PIλDμ controller for load frequency control of multi-source power system", International Journal of Bio-Inspired Computation, vol. 13, no. 4, pp. 209-221, June 2019 (doi: 10.1504/IJBIC.2019.100153).
[14] A.X. R. Irudayaraj, N.I.A. Wahab, M.G. Umamaheswari, M.A.M. Radzi, N.B. Sulaiman, V. Veerasamy, S.C. Prasanna, R. Ramachandran, "A Matignon’s theorem based stability analysis of hybrid power system for automatic load frequency control using atom search optimized FOPID controller", IEEE Access, vol. 8, pp. 168751-168772, Sept. 2020 (doi: 10.1109/ACCESS.2020.3021212).
[15] S. Pahadasingh, C. Jena, C. K. Panigrahi, " Load frequency control incorporating electric vehicles using FOPID controller with HVDC link", Proceeding of the EPECCT, pp. 181-203, Singapore, Feb. 2020 (doi: 10.1007/978-981-15-2305-2_15).
[16] A. Latif, S.S. Hussain, D.C. Das, T.S. Ustun, A. Iqbal, "A review on fractional order (FO) controllers’ optimization for load frequency stabilization in power networks", Energy Reports, vol. 7, pp. 4009-4021, Nov. 2021 (doi: 10.1016/j.egyr.2021.06.088).
[17] S. Asgari, A. A. Suratgar, M. Kazemi, "Feedforward fractional order PID load frequency control of microgrid using harmony search algorithm", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, no. 4, pp. 1369-1381, Dec. 2021 (doi: 10.1007/s40998-021-00428-7).
[18] A. Fathy, A. G. Alharbi, "Recent approach based movable damped wave algorithm for designing fractional-order PID load frequency control installed in multi-interconnected plants with renewable energy", IEEE Access, vol. 9, pp. 71072-71089, May 2021 (doi: 10.1109/ACCESS.2021.3078825).
[19] N. Kumar, M. A. Alotaibi, A. Singh, H. Malik, M. E. Nassar, "Application of Fractional Order-PID Control Scheme in Automatic Generation Control of a Deregulated Power System in the Presence of SMES Unit", Mathematics, vol. 10, no. 3, pp. 521, Feb. 2022 (doi: 10.3390/math10030521).
[20] A. Fathy, D. Yousri, H. Rezk, S. B. Thanikanti, H. M. Hasanien, "A Robust Fractional-Order PID Controller Based Load Frequency Control Using Modified Hunger Games Search Optimizer", Energies, vol. 15, no. 1, pp. 361, Jan. 2022 (doi: 10.3390/en15010361).
[21] M. K. Sarkar, A. Dev, P. Asthana, D. Narzary, "Chattering free robust adaptive integral higher order sliding mode control for load frequency problems in multi‐area power systems", IET Control Theory and Applications, vol. 12, no. 9, pp. 1216-1227, June 2018 (doi: 10.1049/iet-cta.2017.0735).
[22] J. Guo, "Application of full order sliding mode control based on different areas power system with load frequency control", ISA transactions, vol. 92, pp. 23-34, Sept. 2019 (doi: 10.1016/j.isatra.2019.01.036).
[23] S. Prasad, S. Purwar, N. Kishor, "Load frequency regulation using observer based non-linear sliding mode control", International Journal of Electrical Power & Energy Systems, vol. 104, pp. 178-193, Jan. 2019 (doi: 10.1016/j.ijepes.2018.06.035).
[24] L. Esteki, A. A. Zamani, S. M. Kargar, S. Mousavi, "Automatic generation control of multi-area power system using a fuzzy wavelet neural network load frequency controller combined with shuffled frog leaping algorithm", Majlesi Journal of Electrical Engineering, vol. 7, no. 4, pp. 55-63, May 2013.
[25] R. Shahedi, K. Sabahi, M. Tavan, A. Hajizadeh "Self-tuning fuzzy PID controller for load frequency control in ac micro-grid with considering of input delay", Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 35, pp. 19-26, Dec. 2019 (in Persian) (dor: 20.1001.1.23223871.1397.9.35.3.6).
[26] A. Abazari, H. Monsef, B. Wu, "Load frequency control by de‐loaded wind farm using the optimal fuzzy‐based PID droop controller", IET Renewable Power Generation, vol. 13, no. 1, pp. 180-190, Jan. 2019 (doi: 10.1049/iet-rpg.2018.5392).
[27] S.A. Seyed-Beheshti-Fini, S.M. Mohammad Shariatmadar, V. Amir, "Frequency control in multi-carrier microgrids with the presence of electric vehicles based on adaptive neuro fuzzy inference system controller", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 55, pp. 27-42, Dec. 2023 (in Persian) (dor: 20.1001.1.23223871.1402.14.55.3.1).
[28] P. Ojaghi, M. Rahmani, "LMI-based robust predictive load frequency control for power systems with communication delays", IEEE Trans. on Power Systems, vol. 32, no. 5, pp. 4091-4100, Jan. 2017 (doi: 10.1109/TPWRS.2017.2654453)
[29] L. Xiong, H. Li, J. Wang, "LMI based robust load frequency control for time delayed power system via delay margin estimation", International Journal of Electrical Power and Energy Systems, vol. 100, pp. 91-103, Sept. 2018 (doi: 10.1016/j.ijepes.2018.02.027).
[30] F.K. Abo-Elyousr, A.Y. Abdelaziz, "A novel modified robust load frequency control for mass-less inertia photovoltaics penetrations via hybrid PSO-Woa Approach", Electric Power Components and Systems, vol. 47, no. 19-20, pp. 1744-1758, Dec. 2019 (doi: 10.1080/15325008.2020.1731867).
[31] K. Lu, W. Zhou, G. Zeng, Y. Zheng, "Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system", International Journal of Electrical Power and Energy Systems, vol. 105, pp. 249-271, Feb. 2019 (doi: 10.1016/j.ijepes.2018.08.043).
[32] J. Yang, X. Sun, K. Liao, Z. He, L. Cai, "Model predictive control‐based load frequency control for power systems with wind‐turbine generators", IET renewable power generation, vol. 13, no. 15, pp. 2871-2879, Nov. 2019 (doi: 10.1049/iet-rpg.2018.6179).
[33] H. Grover, J. Ojha, A. Verma, T. S. Bhatti, "Adaptive load frequency control of a grid connected solar PV system", Proceeding of the EEEIC/I&CPS, pp. 1-4, Genova, Italy, June 2019 (doi: 10.1109/EEEIC.2019.8783408).
[34] S. Kayalvizhi, D.V. Kumar, "Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control", IEEE Access, vol. 5, pp. 16241-16251, Aug. 2017 (doi: 10.1109/ACCESS.2017.2735545).
[35] Y. Liu, Y. Chen, M. Li, "Dynamic event-based model predictive load frequency control for power systems under cyber attacks", IEEE Trans. on Smart Grid, vol. 12, no. 1, pp. 715-725, Jan. 2021 (doi: 10.1109/TSG.2020.3022094).
[36] R. Ramachandran, B. Madasamy, V. Veerasamy, L. Saravanan, "Load frequency control of a dynamic interconnected power system using generalised Hopfield neural network based self-adaptive PID controller", IET Generation, Transmission and Distribution, vol. 12, no. 21, pp. 5713-5722, Nov. 2018 (doi: 10.1049/iet-gtd.2018.5622).
[37] V. Veerasamy, N.I.A. Wahab, R. Ramachandran, A. Vinayagam, M.L. Othman, H. Hizam, J. Satheeshkumar, "Automatic load frequency control of a multi-area dynamic interconnected power system using a hybrid PSO-GSA-tuned PID controller", Sustainability, vol. 11, no. 24, pp. 6908, Dec. 2019 (doi: 10.3390/su11246908).
[38] D. Kler, V. Kumar, K.P. Rana, "Optimal integral minus proportional derivative controller design by evolutionary algorithm for thermal-renewable energy-hybrid power systems", IET Renewable Power Generation, vol. 13, no. 11, pp. 2000-2012, Aug. 2019 (doi: 10.1049/iet-rpg.2018.5745).
[39] J. Pahasa, I. Ngamroo, "Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid", IEEE Systems Journal, vol. 10, no. 1, pp. 97-105, Apr. 2014 (doi: 10.1109/JSYST.2014.2313810).
[40] R. Kumar, N. Sinha, "Modeling and control of dish-Stirling solar thermal integrated with PMDC generator optimized by meta-heuristic approach", IEEE Access, vol. 8, pp. 26343-26355, Jan. 2020 (doi: 10.1109/ACCESS.2020.2970613).
[41] S. Vachirasricirikul, I. Ngamroo, "Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller", IEEE Trans. on Smart Grid, vol. 5, no. 1, pp. 371-380, Jan. 2014 (doi: 10.1109/TSG.2013.2264921).
[42] T. Masuta, A. Yokoyama, "Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters", IEEE Trans. on smart grid, vol. 3, no. 3, pp. 1253-1262, May 2012 (doi: 10.1109/TSG.2012.2194746).
_||_