روشی جامع برای مدل سازی عمومی فضای حالت مبدل های چندسطحی متوالی متصل به شبکه
محورهای موضوعی : انرژی های تجدیدپذیرحسن منافی میرعلیلو 1 , مهدی سلیمی 2 * , جعفر سلطانی 3 , عادل اکبری مجد 4
1 - دانشکده مهندسی برق- واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
2 - دانشکده مهندسی برق- واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
3 - دانشکده مهندسی برق و کامپیوتر- دانشگاه صنعتی اصفهان، اصفهان، ایران
4 - دانشکده فنی و مهندسی- دانشگاه محقق اردبیلی، اردبیل، ایران
کلید واژه: مدل فضای حالت, اینورتر چندسطحی, کنترل غیرخطی, مبدلهای پل H,
چکیده مقاله :
در این مقاله برای مدلسازی فضای حالت عمومی مبدل چندسطحی سری متصل به شبکه، روشی جامع پیشنهاد شده است. در اینورترهای چندسطحی به دلیل غیرخطی بودن رفتار آنها، برای تضمین پایداری سیستم در حوزه کاری وسیع استفاده از کنترل کننده غیرخطی اجتناب ناپذیر است. برای همین منظور مدلسازی فضای حالت جهت طراحی این نوع کنترل کننده ها لازم است. مدل پیشنهاد شده برای حالت کلی مبدل با تعداد n پل ارائه شده است. برای راستی آزمایی مدل فضای حالت به دست آمده، یک نمونه آزمایشگاهی از مبدل چندسطحی با دوپل طراحی و ساخته شده و نتایج مربوط به شبیهسازی مدل فضای حالت به دست آمده با نتایج شبیهسازی مبدل متصل به شبکه و نتایج عملی مقایسه شده است. مقایسه نتایج نشاندهنده درستی عملکرد مدل است. همچنین شبیهسازی های مربوطه توسط نرم افزار تخصصی EMTDC/PSCAD انجام یافته است.
In this paper, a novel approach for comprehensive state-space modelling of the grid connected multi-level inverters is proposed. Details of the developed method is presented using cascaded H-bridge converters, however it can be applied to other topologies of the grid connected inverters as well. In multi-level converters, due to their nonlinear characteristic, application of the nonlinear controllers is more beneficial to ensure stability of the system in a wide range of operation. Hence, the state-space model is required to design a nonlinear controller. To achieve converter model, it is divided into some sub-circuits considering different operational intervals in a switching cycle. To verify accuracy and effectiveness of the obtained state-space model, a laboratory setup of a multi-level. Converter with two H-bridges has been designed and implemented. Also, results of the developed state-space model has been compared with the simulation/experimental results of the grid-connected converter. According to the simulation and experimental result, accuracy of the model is verified. It should be noted that all of the simulations have been performed by EMTDC/PSCAD toolbox.
[1] N. Kumar, T.K. Saha, J. Dey, “Sliding-mode control of PWM dual inverter-based grid-connected PV system: Modeling and performance analysis”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 435-444, June 2016 (doi: 10.1109/JESTPE.2015.2497900).
[2] B. Sharma, J. Nakka, “Single-phase cascaded multilevel inverter topology addressed with the problem of unequal photovoltaic power distribution in isolated dc links”, IET Power Electronics, vol. 12, no. 2, pp. 284-294, Feb. 2019 (doi: 10.1049/iet-pel.2018.5640).
[3] G. Schettino, F. Viola, A.O. Di Tommaso, P. Livreri, R. Miceli, “Experimental validation of a novel method for harmonic mitigation for a three-phase five-level cascaded H-bridges inverter”, IEEE Trans. on Industry Applications, vol. 55, no. 6, pp. 6089-6101, Nov./Dec. 2019 (doi: 10.1109/TIA.2019.2933522).
[4] S. Gulur, V.M. Iyer, S. Bhattacharya, “A dual-loop current control structure with improved disturbance rejection for grid-connected converters”, IEEE Trans. on Power Electronics, vol. 34, no. 10, pp. 10233-10244, Oct. 2019 (doi: 10.1109/TPEL.2019.2891686).
[5] M. Salimi, F. Radmand, M. Hosseini Firouz, “Dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output controller“, Journal of Modern Power Systems and Clean Energy, vol. 9, no. 1, pp. 94-103, Jan. 2021 (doi: 10.35833/MPCE.2018.000353).
[6] K. Ma, W. Tang, R. Cheng, Y. Song, “Modeling of interconnected voltage and vurrent controlled converters with coupled LC–LCL filters“, IEEE Trans. on Power Electronics, vol. 36, no. 4, pp. 3995–4005, April 2021 (doi: 10.1109/TPEL.2020.3023911).
[7] M.D. Siddique, S. Mekhilef, N.M. Shah, M.A. Memon, “Optimal design of a new cascaded multilevel inverter topology with reduced switch count”, IEEE Access, vol. 7, pp. 24498-24510, Feb. 2019 (doi: 10.1109/ACCESS. 2019.2890872).
[8] D. Karwatzki, A. Mertens, “Generalized control approach for a class of modular multilevel converter topologies”, EEE Trans. on Power Electronics, vol. 33, no. 4, pp., 2888-2900, April 2018 (doi: 10.1109/TPEL.2017.2703917).
[9] D. Zhang, D. Dong, R. Datta, A. Rockhill, Q. Lei, L. Garces, “Modular embedded multilevel converter for MV/HVDC applications”, IEEE Trans. on Industry Application, vol. 54, no. 6, pp. 6320-6331, Nov./Dec. 2018 (doi: 10.1109/TIA.2018.2850891).
[10] J. Fang, Z. Li, S. M. Goetz, “Multilevel converters with symmetrical half-bridge submodules and sensorless Voltage Balance”, EEE Trans. on Power Electronics, vol. 36. No. 1, pp. 447-458, Jan. 2021 (doi: 10.1109/TPEL.2020.3000469)
[11] L.M. Tolbert, F.Z. Peng, T.G. Habetler, “Multilevel converters for large electric drives”, IEEE Trans. on Industry Applications, vol. 35, no. 1, pp. 36–44, Jan./Feb. 1999 (doi: 10.1109/APEC.1998.653826).
[12] J. Rodriguez, J. Lai, F. peng, “Multilevel converters: a survey of topologies, controls and applications”, IEEE Trans. on Industry Electronics, vol. 49, 4, pp. 724-738, Aug. 2002 (doi: 10.1109/TIE.2002.801052).
[13] F.Z. Peng, J.S. Lai, J.W. McKeever, J.V. Coevering, “A multilevel voltage-source inverter with separate dc sources for static var generation”, IEEE Trans. on Industry Electronics, vol. 32, no. 5, pp. 1130–1138, Sept./Oct. 1996 (doi: 10.1109/IAS.1995.530626).
[14] Z. Du, L. M. Tolbert, J.N. Chiasson, B. Özpineci, “A Cascade multilevel inverter using a single DC source”, Proceeding of the IEEE/APEC, pp. 1-5, Dallas, TX, USA, March 2006 (doi: 10.1109/APEC.2006.1620573).
[15] B.N. Rao, Y. Suresh, A.K. Panda, B.S. Naik, V. Jammala, “Development of cascaded multilevel inverter based active power filter with reduced transformers”, CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 147-157, June 2020 (doi: 10.24295/CPSSTPEA.2020.00013).
[16] C.M. Nirmal Mukundan, P. Jayaprakash, “Realization of cascaded H-Bridge multilevel inverter based grid integrated solar energy system with band stop generalized integral control”, IEEE Trans. on Industry Applications, vol. 57, no. 1, 764-773, Jan./Feb. 2021 (doi: 10.1109/TIA.2020.3031546).
[17] M. Mubashwar Hasan, A. Abu-Siada, S.M. Islam, M.S.A. Dahidah, “A new cascaded multilevel inverter topology with galvanic isolation”, IEEE Trans. on Industry Application, vol. 54, no. 4, pp. 3463-3472, July/Aug. 2018 (doi: 10.1109/TIA.2018.2818061).
[18] S.K. Sahoo, T. Bhattacharya, “Phase-shifted carrier-based synchronized sinusoidal PWM techniques for a cascaded H-Bridge multilevel inverter”, IEEE Trans. on Power Electronics, vol. 33, no. 1, pp. 513-524, Jan. 2018 (doi: 10.1109/TPEL.2017.2669084).
[19] A. Moeini, H. Iman-Eini, M. Bakhshizadeh, “Selective harmonic mitigation pulse width modulation technique with variable DC-link voltages in single and three-phase cascaded H-bridge inverters”, IET Power Electronics, vol. 7, no. 4, pp. 924–932, April 2014 (doi: 10.1049/iet-pel.2013.0315).
[20] Q. Huang, A.Q. Huang, “Feedforward proportional carrier-based PWM for cascaded H-Bridge PV inverter”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 2192-2205, Dec. 2018 (doi: 10.1109/JESTPE.2018.2817183).
[21] J. Wang, R. Burgos, D. Boroyevich, “Switching-cycle state-space modeling and control of the modular multilevel converter”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 1159-1170, Dec. 2014 (doi: 10.1109/JESTPE.2014.2354393).
[22] G. Bergna-Diaz, J. Freytes, X. Guillaud, S. D’Arco, J.A. Suul, “Generalized aoltage based state-space modeling of modular multilevel converters with constant equilibrium in steady state”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 707-725, June 2018 (doi: 10.1109/JESTPE.2018.2793159).
[23] Z. Xu, B. Li, S. Wang, S. Zhang, D. Xu, “Generalized single-phase harmonic state space modeling of the modular multilevel converter with zero-sequence voltage compensation”, IEEE Trans. on Industrial Electronics, vol. 66, no. 8, pp. 6416-6426, Aug. 2019 (doi: 10.1109/TIE.2018.2885730).
[24] M. Chaves, E. Margato, J.F. Silva, S.F. Pinto, “Generalized state-space modeling for m level diode-clamped multilevel converters”, Mathematical Methods in Engineering, pp. 67-85, 2014 (doi: 10.1007/978-94-007-7183-3_7).
[25] R.G. Raj, S. Palani, H. Habeebullah Sait, “State space modeling and implementation of a new transformer based multilevel inverter topology with reduced switch count”, Circuits and Systems, vol. 7, pp. 446-463, April 2016 (doi: 10.4236/cs.2016.74038).
[26] J. Lyu, X. Zhang, X. Cai, M. Molinas, “Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics”, IEEE Trans. on Power Electronics, vol. 34, no. 3, pp. 2134-2148, March 2019 (doi: 10.1109/TPEL.2018.2842682).
[27] M. Salimi, J. Soltani, A. Zakipour, “Experimental design of the adaptive backstepping control technique for singlephase shunt active power filters”, IET Power Electronics, vol. 10, no. 8, pp. 911-918, March 2017 (doi: 10.1049/iet-pel.2016.0366).
[28] M. Bhardwaj, “Software phased-locked loop design using C2000™ microcontrollers for single phase grid connected inverter”, Application Report, Texas Instruments, July 2013.
[29] S. Jayalath, M. Hanif, “An LCL-filter design with optimum total inductance and capacitance”, IEEE Trans. on Power Electronics, vol. 33, no. 8, pp. 6686-6696, Aug. 2018 (doi: 10.1109/TPEL.2017.2754100).
_||_