بررسی عوامل موثر بر ریسک اعتباری مشتریان بانک رفاه با استفاده از تحلیل تابع بقا (شعب شهر تهران)
محورهای موضوعی :
دانش سرمایهگذاری
احمد رضا الهی
1
,
رحمت الله محمدی پور
2
*
,
اسفندیار محمدی
3
1 - دانشجوی دکتری مدیریت مالی، واحد علوم و تحقیقات ایلام، دانشگاه آزاد اسلامی ایران، ایلام، ایران.
2 - دکتری حسابداری، گروه حسابداری، واحد علوم و تحقیقات ایلام، دانشگاه آزاد اسلامی ایران، ایلام، ایران .
3 - دکتری مدیریت استراتژیک، دانشگاه ایلام، ایلام، ایران.
تاریخ دریافت : 1398/08/07
تاریخ پذیرش : 1398/11/21
تاریخ انتشار : 1401/04/01
کلید واژه:
بانک رفاه,
ریسک اعتباری,
تابع بقا,
شرایط وام گیرنده,
چکیده مقاله :
ریسک اعتباری یکی از ریسک های بسیار مهم در صنعت بانکداری است. این مطالعه با هدف شناسایی عوامل اثرگذار (همچون ویژگی های مربوط به وام، ویژگی های فردی مشتریان و عوامل اقتصاد کلان) بر ریسک اعتباری گرفته است. بدین منظور از یک نمونه تصادفی شامل ۵۳۱۹ نفر از مشتریان که در بازه ی زمانی ۱۳92-۱۳۹7 از بانک رفاه وام گرفته اند استفاده شده است. این مقاله با استفاده از مدل های مرسوم تحلیل بقا شامل مدل ناپارامتری کاپلان - میر و مدل شبه پارامتری کاکس به شناسایی عوامل اثرگذار بر ریسک قصور مشتریان پرداخته است.نتایج مدل نشان داد که متغیرهایی همچون مبلغ وام، تعداد اقساط، تعداد فرزند، تحصیلات، سن، نوع شغل و عنوان شغلی بر منحنی های تابع بقا و تابع نرخ خطر تأثیر گذارند. در افق های زمانی کوتاه مدت (مثلا یک ساله) شرایط اقتصادی جامعه نقش کلیدی در وقوع قصور این دسته از مشتریان بازی می کند.
چکیده انگلیسی:
Credit risk is one of the most important risks in the banking industry. This study aimed to identify factors that influence credit risk (such as loan characteristics, individual customer characteristics, and macroeconomic factors). For this purpose, a random sample of 5 customers who borrowed from Refah Bank during the period 19-92-92 was used. This paper investigates the factors affecting customer default risk using conventional survival analysis models including Kaplan-Meier nonparametric model and Cox pseudo-parametric model.The results of the model showed that variables such as loan amount, number of installments, number of children, education, age, type of job and job title influenced the survival and risk function curves. In the short-term (eg, one-year) horizon, the economic conditions of the community play a key role in the failure of these customers.
منابع و مأخذ:
اصلی، شعله. (۱۳۹۰). مدیریت ریسک اعتباری با نگاهی بر الگوی پرداخت تسهیلات در سایر کشورها. گزارش منتشر شده. اداره تحقیقات و کنترل ریسک بانک سپه
البرزی، محمود محمد پورزرندی، محمدابراهیم و خان بابایی، محمد، (۱۳۸۹). به کارگیری الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانکها، نشریه مدیریت فناوری اطلاعات. ۲ (4)، صص ۲۳-۳۸
پرویزیان، کورش، ذکاوت، مرتضی و محمدیان، مهدی. (۱۳۸۸). رتبه بندی داخلی مشتریان بانکها با استفاده از مدل های رگرسیونی لاجیت. پژوهشنامه اقتصادی. 6، صص ۹۱-۸۹
Abdou, H. (2009). An Evaluation of Alternative Scoring Models in Private Banking. The Journal of Risk Finance, 10, pp: 38-53.
Abdou, H. and Pointon, J. (2011). Credit Scoring, Statistical Techniques and Evaluation Criteria: a Review of the Literature. Intelligence Systems in Accounting, Finance and Management, 18(2, 3), pp: 59-88.
Abdou, H., Pointon, J. and El Masiy, A. (2008). Neural Nets versus Conventional Techniques in Credit Scoring in Egyptian Banking. Expert Systems with Applications, 35 (3), pp: 1275-1292
Akritas, M. G. (1994). Nearest Neighbor Estimation of a Bivariate Distribution under Random Censoring. Annals of Statistics, 22, pp: 1299-1327.
Al Amari, A. (2002). The Credit Evaluation Process and the Role of Credit Scoring: A Case Study of Qatar. Ph.D. Thesis, University College Dublin.
Ali, A. and Daly, K. (2010). Macroeconomic Determinants of Credit Risk: Recent Evidence from a Cross Country Study. International Review of Financial Analysis, 19, pp:165-171.
Allen, L. N. and Rose, L. C. (2006). Financial Survival Analysis of Defaulted Debtors. Journal of Operational Research Society, 57, pp: 630-636.
Anderson, R. (2007). The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation. New York: Oxford University Press.
Aver, B. (2008). An Empirical Analysis of Credit Risk Factors of Slovenian Banking System. Managing Global Transitions, 6(3), pp: 317-334.
Baba, N. and Goko, H. (2006). Survival Analysis of Hedge Funds, Bank of Japan. Working Papers Series, No.06-E-05.
Baboucek, I. and Jancar, M. (2005). Effects of Macroeconomic Shock to the Quality of Aggregate loan portfolio, Czech National Bank. Working Paper Series, No.1, pp: 1-62.
Baesens, B., Van gestel, T., Stepanova, M. and Van den Poel, D. (2005). Neural Network Survival Analysis for Personal Loan Data. Journal of the Operational Research Society, 56(9), pp: 1089-1098.
Bailey, M. (2004). Consumer Credit Quality: Underwriting, Scoring, Fraud Prevention and Collections. Kings Wood, Bristol: White Box Publishing,
Banasik, J., Crook, J. and Thomas, L.C. (1999). Not if But When will Borrowers Default. The journal of the operational research, 50(12), pp: 1185-1190.
Banasik, J., Crook, J. and Thomas, L.C. (2003). Sample Selection Bias in Credit Scoring Models. Journal of the Operational Research Society, 54 (8), pp: 822-832.
Bangia, A., Diebold, F.X., Kronimus, A., Schagen, C. and Schuermann, T. (2002). Ratings Migration and the Business Cycle, With Applications to Credit Portfolio Stress Testing. Journal of Banking and Finance, 26 (2-3), pp: 235-264.
Basel Committee on Banking Supervision. (2006). International Convergence of Capital Measurement and Capital Standards: A Revised Framework Comprehensive Version.
Bellotti, T. and Crook, J. (2009). Credit Scoring with Macroeconomic Variable Using Survival Analysis. Journal of Operational Research Society, 60, pp: 1699-1707.
Bellotti, T. and Crook, J. (2013). Forecasting and Stress Testing Credit Card Default Using Dynamic Models. International Journal of Forecasting, 29(4), pp: 563-574.
Bellotti, T., Crook, J. (2009). Support Vector Machines for Credit Scoring and Discovery of Significant Features. Expert Systems with Applications, 36 (2/2), pp: 3302-3308.
Beran, J. and Djaidja, A.K. (2007). Credit Risk Modeling Based on Survival Analysis with Immunes. Statistical Methodology, 4(3), pp: 251-276.
Bessis, J. (2002). Risk management in banking. England ,John Wiley & Sons Ltd.
Betancourt, L. (1999). Using Markov Chains to Estimates Losses from a Portfolio of Moitgages. Review of Quantitative Finance and Accounting, 12(3), pp: 303-318.
۱۷۲
Therneau, T. M., Grambsch, P.M. and Fleming, T. R. (1990). Martingale-Based Residuals for Survival Models. Biometrika, 77, pp: 147-160.
Thomas, L. C., Edelman, D. B. and Crook, J. N. (2004). Readings in Credit Scoring: Recent Developments, Advances, and Aims. New York, Oxford University Press.
Thomas, L.C. (2009). Consumer Credit Models: Pricing, Profit, and Portfolios. First Ed, Oxford University Press.
Thomas, L.C., Edelman, D.B. and Crook, J.N. (2002). Credit Scoring and Applications. Philadelphia: Society for Industrial and Applied Mathematics.
Thomas, L.C., Ho, J. and Scherer, W.T. (2001). Time will Tell: Behavioral Scoring and the Dynamics of Consumer Credit Assessment. IMA Journal of Management Mathematics, 12, pp: 89-103.
Tong, E.N., Mues, C. and Thomas, L.C. (2012). Mixture Cure Models in Credit Scoring: If and when Borrowers Default. European Journal of Operational Research, 218(1), pp: 132139.
Tripe, D. (1999). Liquidity Risk in Banks. New Zealand, Massey University.
Uno, H., Cai, T., Pencina, M.J., D'Agostino, R.B. and Wei, L.j. (2011). On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data, Statistics in Medicine, 30(10), pp: 1105-1117.
_||_