A discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain
Subject Areas : Mathematical OptimizationMehdi Seifbarghy 1 , Masoud Mirzaei Kalani 2 , Mojtaba Hemmati 3
1 - Department of Industrial Engineering, Alzahra University, Tehran, Iran
2 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
3 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords: Vendor, managed inventory . Economic production quantity . Supply chain . Particle swarm optimization,
Abstract :
This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational parameters of each buyer are sales quantity, sales price and production rate. Channel profit of the supply chain and contract price between the producer and each buyer is determined based on the values of the operational parameters. Since the model belongs to nonlinear integer programs, we use a discrete particle swarm optimization algorithm (DPSO) to solve the addressed problem; however, the performance of the DPSO is compared utilizing two well-known heuristics, namely genetic algorithm and simulated annealing. A number of examples are provided to verify the model and assess the performance of the proposed heuristics. Experimental results indicate that DPSO outperforms the rival heuristics, with respect to some comparison metrics.