بررسی تاثیر فرایند حرارتی بر برخی ویژگیهای کیفی ذرت طی دوره نگهداری انجمادی
محورهای موضوعی : میکروبیولوژی مواد غذاییالناز نیک ذات 1 , سارا انصاری 2
1 - دانش آموخته گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
2 - استادیار گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
کلید واژه: انجماد, ذرت, فرایند حرارتی, ویژگیهای فیزیکوشیمیایی,
چکیده مقاله :
مقدمه: امروزه مصرف میوه و سبزیهای منجمد افزایش یافته است. این امر بدلیل توانایی این محصولات در متقاعد کردن مصرف کننده از نظر حفظ ارزش غذایی، صرفهجویی در زمان و سایر دلایل عملی میباشد. هدف از این پژوهش بررسی برخی ویژگیهای فیزیکوشیمیایی ذرت پس از فرایند حرارتی و نگهداری در دمای 18- درجه سانتیگراد میباشد. مواد و روشها: در این تحقیق ذرت شیرین به دو صورت دانهای و متصل به بلال تحت تیمار حرارتی به مدت 4، 8 و 12 دقیقه قرار گرفته و به مدت 10 هفته در دمای 18- درجه سانتیگراد نگهداری شد. در طول دوره نگهداری و در فواصل زمانی ثابت دو هفتهای میزان افت آب، تغییرات رنگ، ترکیبات فنول کل، فعالیت آنتیاکسیدانی، فعالیت آنزیم پراکسیداز، سفتی بافت و ریزساختار نمونهها سنجیده شدند. یافتهها: نتایج نشان داد میزان افت آب موجود در ساختار ذرتهای دانه شده طی نگهداری انجمادی بطور معنیداری (05/0p<) افزایش یافت بطوریکه دانههای ذرت متصل به بلال در حفظ آب ساختار و بافت خود موثرتر از دانههای جدا عمل کردند. با افزایش زمان حرارت دهی میزان فعالیت آنزیم پراکسیداز، ترکیبات فنولی و فعالیت آنتی اکسیدانی بطور معنی داری (05/0p<) کاهش یافت. طی نگهداری انجمادی نیز افزایش قابل برگشت (فعالیت مجدد) آنزیم مشاهده شد. قدرت مهار رادیکالهای آزاد بین ذرتهای دانه شده و متصل به بلال از نظر آماری تفاوتی نداشت. میزان ترکیبات فنلی دانههای ذرت طی 10 هفته نگهداری در دمای 18- درجه سانتیگراد تا هفته چهارم روند افزایشی و سپس کاهش معنیداری (05/0p<) یافت. دانههای متصل به بلال نیز در مقایسه با ذرتهای دانه شده متحمل تغییرات رنگ بیشتری بودند. نتیجهگیری: تیمار حرارتی بر برخی خصوصیات فیزیکوشیمیایی ذرت طی نگهداری در دمای 18- درجه سانتیگراد تاثیر معنیداری دارد.
Introduction: Today, the consumption of frozen fruits and vegetables has been increasingdue to the ability of these products to persuade the consumers to maintain nutritional value,time-saving and other practical reasons. The aim of this study was to investigate somephysicochemical properties of two groups of corn kernels, single and attached to the cob, afterheat processing and storage at -18 ° C.Materials and Methods: In this study, sweet corn in two forms of single kernels and cornson the cob were cooked for 4, 8 and 12 minutes and stored for 10 weeks at -18 ° C. Theeffects of heat treatment on the drip loss, color changes, total phenolic content, antioxidantactivity, peroxidase activity, hardness and microstructure were investigated every two weeks.Results: The amount of drip loss increased significantly (p<0.05) during freezing, andtherefore the hardness decreased, in which the corns on the cob were more effective inmaintaining their water structure as compared to the single kernels. The peroxidase activity,total phenolic content and antioxidant activity were significantly (p<0.05) decreased withheating process. The reversibility of peroxidase activity was observed during the freezingstorage. In terms of the radical scavenging capacity, there was no significant differencebetween single corns and the ones on the cob. The amount of phenolic compounds increaseduntil the fourth week and then decreased significantly (p<0.05) during storage at -18 °C.Moreover, the corns on the cob also showed more color changes than the single ones.Conclusion: Heat Treatment has significant effect on some physicochemical properties ofcorn during storage at -18 ° C.
افشاری جویباری، ح. و فرحناکی، ع. (1388). امکان استفاده از نرم افزار فتوشاپ برای اندازهگیری رنگ مواد غذایی بررسی تغییرات رنگ خرمدای مضافتی بم در طی رساندن مصنوعی پژوهشهای علوم و صنایع غذایی ایران، سال 5 ، شماره 1 ، صفحات 37-46.
بینام. (1374). روش اندازهگیری رطوبت خام غلات و فرآوردههای آن. استاندارد ملی ایران، شماره 2705، چاپ اول.
بینام. (1374). روش اندازهگیری پروتئین خام غلات و فرآورده های آن. استاندارد ملی ایران، شماره 2863 ، چاپ اول.
بینام. (1367). روش اندازهگیری چربی غلات و فرآوردههای آن. استاندارد ملی ایران، شماره 2862، چاپ اول.
Adams, J. B., Harvey, A. & Dempsey, C. E. (1996). Regenerated and denaturated peroxidase as potential lipid oxidation catalysts. Food Chemistry, 57(4), 505–514.
Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D. & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427.
Bajčan, D., Tomáš, J., Uhlířová, G., Arvay, J., Trebichalský, P., Stanovič, R. & Šimanský, V. (2013). Antioxidant potential of spinach, peas and sweet corn in relation to freezing period. Czech Journal of Food Science, 31, 613-618.
Boyes, S., Chevis, P., Holden, J. & Perera, C. (1997). Microwave and water blanching of corn kernels: control of uniformity of heating during microwave blanching. Journal of Food Processing and Preservation, 21 (6), 461-484.
Bunea, A., Andjelkovic, M., Socaciu, C.,
Bobis, O., Neacsu, M., Verhe, R. & Camp, J.V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach. Food Chemistry, 108 (2), 649-656.
Chiang, P. Y. & Luo, Y. (2007). Effects of pressurized cooking on the relationship between the chemical compositions and texture changes of lotus root (Nelumbo nucife ra Gaertn.). Food Chemistry, 105, 480-484.
Chism, G. W. & Haard, N. F. (1996). Characteristics of edible plant tissues, In Food Chemistry, 3rd ed., edited by Fennema, O. R., Dekker: New York, pp. 943-1011.
Dewanto, V., Wu, X. & Liu, R. H. (2002). Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry, 50 (17), 4959-4964.
Dicsev, S. (1972). Weight loss in vegetables during freezing. Huetoeipar 19, 33–36.
Galetto, C. D., Verdini, R. A., Zorrilla, S. E. & Rubiolo, A. A. (2010). Freezing of strawberries by immersion in CaCl2 solutions. Food Chemistry, 123 (2), 243-248.
Güneş, B. & Bayindirli, A. (1993). Peroxidase and lipoxygenase inactivation during blanching of green beans, green peas and carrots. LWT-Food Science and Technology, 26 (5), 406-410.
Han, C., Zhao, Y., Leonard, S. W. & Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.
Kiani, H. & Sun, D. W. (2011). Water crystallization and its importance to freezing of foods: a review. Trends in Food Science and Technology, 22, 407-426.
Kidmose, U. & Martens, H. J. )1999(. Changes in texture, microstructure and nutritional quality of carrot slices during blanching and freezing. Journal of the Science of Food and Agriculture, 79, 1747–1753.
Lee, Y.C. & Hammes, J. K. (1979). Heat inactivation of peroxidase in corn-on-the-cob. Journal of Food Science, 44(3), 785-787.
Martínez, S., Pérez, N., Carballo, J. & Franco, I. (2013). Effect of blanching methods and frozen storage on some quality parameters of turnip greens (“grelos”). LWT-Food Science and Technology, 51(1), 383-392.
Mazzeo, T., Paciulli, M., Chiavaro, E., Visconti, A., Fogliano, V., Ganino, T. & Pellegrini, N. (2015). Impact of the industrial freezing process on selected vegetables -Part II. Colour and bioactive compounds. Food Research International, 75, 89-97.
Mirsaeedghazi, H., Emam-Djomeh, Z. & Ahmadkhaniha, R. (2014). Effect of frozen storage on the anthocyanins and phenolic components of pomegranate juice. Journal of Food Science and Technology, 51(2), 382-386.
Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A. & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables — Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337.
Parada, J. & Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72 (2), R21-R32.
Petzold, G., Caro, M. & Moreno, J. (2014). Influence of blanching, freezing and frozen storage on physicochemical properties of broad beans (Vicia faba L). International journal of refrigeration, 40, 429-434.
Rodriguez-Saona, L. E., Barrett, D. M. & Selivonchick, D. P. (1995). Peroxidase and lipoxygenase influence on stability of polyunsatu-rated fatty acids in sweet corn (Zeamays L.) during frozen storage. Journal of Food Science, 60 (5), 1041–1044.
Sanz, P. D., De Elvira, C., Martino, M., Zartzky, N., Otero, L. & Carrasco, J. A. (1999). Freezing rate simulation as an aid to reducing crystallization damage in foods. Meat Science, 52(3), 275-278.
Scott, C. E. & Eldridge, A. L. (2005). Comparison of carotenoid content in fresh, frozen and canned corn. Journal of Food Composition and Analysis, 18 (6), 551-559.
Shao, X. & Li, Y. (2011). Quality control of fresh sweet corn in controlled freezing-point storage. African Journal of Biotechnology, 10 (65), 14534-14542.
Sitthitrai, K., Ketthaisong, D., Lertrat, K. & Tangwongchai, R. (2015). Bioactive, antioxidant and enzyme activity changes in frozen, cooked, mini, super-sweet corn (Zea mays L. saccharata ‘Naulthong’). Journal of Food Composition and Analysis, 44, 1–9.
Steffe, J. F. (1996). Rheological methods in food process engineering (pp. 295–349). East Lansing, MI: Freeman Press.
Suutarinen, J., Honkapää, K., Heiniö, R. L., Autio, K. & Mokkila, M. (2000). The effect of different prefreezing treatments on the structure of strawberries before and after jam making. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 33, 188–201.
Tu, J., Zhang, M., Xu, B. & Liu, H. (2015). Effects of different freezing methods on the quality and microstructure of lotus (Nelumbo nucifera) root. International Journal of Refrigeration, 52, 59-65.
_||_