مدلسازی استخراج فوق بحرانی اسانس پوست پرتقال
محورهای موضوعی : میکروبیولوژی مواد غذاییمرجان حقایق 1 , سید علی وزیری یزدی 2 , فاطمه ذبیحی 3 , محمدحسن ایکانی 4
1 - دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، باشگاه پژوهشگران جوان و نخبگان، تهران، ایران
2 - دانشیار دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، گروه مهندسی شیمی، تهران، ایران
3 - استادیار دانشگاه آزاد اسلامی، واحد علوم و تحقیقات آیت الله آملی، گروه مهندسی شیمی، آمل، ایران
4 - دانشیار سازمان پژوهشهای علمی و صنعتی ایران، پژوهشکده فناوری های شیمیایی، ایران
کلید واژه: اسانس, استخراج, برهمکنش شبکه جامد- حل شونده, سیال فوق بحرانی, مدلسازی ریاضی,
چکیده مقاله :
مقدمه: استخراج فوق بحرانی تکنیک جدید و قدرتمندی است که دمای کمی نیاز دارد و همچنین محصول فرآیند عاری از باقیمانده حلال می باشد. مدلسازی استخراج فوق بحرانی، ابزاری جهت شرح رفتار فرایند و پیشبینی شرایط عملیاتی بهینه بمنظور طراحی و افزایش مقیاس این فرایندها از آزمایشگاه به مقیاسهای نیمه صنعتی و صنعت می باشد. مواد و روش ها: بمنظور مدلسازی ریاضی استخراج فوق بحرانی روغن اسانس از پوست پرتقال، از مدل نوین اصلاح یافته توسط Sovova برپایه مفهوم انتقال جرم در سلولهای شکسته و سالم استفاده گردید. این مدل داده های آزمایشگاهی را برطبق دو مرحله استخراج شبیه سازی می کند، مرحله اول توسط تعادل فازی و برهمکنش بین شبکه جامد- حل شونده و مرحله دوم توسط نفوذ داخلی کنترل می شود. معادلات حاصل با فرض جریان پلاگ، بصورت دستگاه معادلات دیفرانسیلی معمولی می باشد و توسط نرم افزارMatlab، به روش عددی حل میگردد. برخی از پارامترهای مدل بوسیله نتایج آزمایشگاهی بدست میآیند، بنابراین مدل حاصل پیش بینی بهتری دارد. یافته ها: منحنی استخراج بصورت تغییر بازده برحسب حلال نسبی عبوری ارائه شد.همچنین اثر پارامترهای موثر بر مدل شامل بازده آسیاب، کسر فضای خالی بستر، تعداد میکسرها و ضریب انتقال جرم خارجی بررسی شده است. نتیجه گیری: بهترین نتایج در بازده آسیاب برابر 7/0 و تعداد میکسرها برابر با 20 و ضریب انتقال جرم خارجی (s/1) 011/0، حاصل شد که مدل تطبیق خوبی با داده های تجربی داشت. خطای بین داده های تجربی و مدل حدود 6% می باشد.
Introduction: Supercritical fluid extraction (SCFE) is a promising technique that has been attracted by some scientist recently due to the moderate operational condition.Moreover, SCFE products are pure and free of residual solvents. Mathematical modeling of supercritical extraction is a useful tool for deducing the SCF extraction systems, prediction of optimum operational conditions and system design variables, and scale-up to the pilot and industrial scales. Materials and Methods: A new mathematical model modified by Sovova, based on the concept of broken and intact cells, has been applied to understand the variables effect on extraction efficiency in a SCF extraction system. System was made in order to extract the essential oil from orange peel. This model simulates the experimental data points adequately for two separate time using combined pattern of phase equilibrium equations, solute/matrix interaction and internal diffusion rules in the solid particles. Model equations for plug flow are ordinary differential equations and are solved by matlab using numirical method. A number of physical parameters have been determined by experimental data fitting.Results: Extraction curves have been presented on the form of extraction yield versus relative amount of passed solvent. The effect of operational parameters including grinding efficiency, bed void fraction, number of mixers and external mass transfer coefficient have been also investigated.Conclusion: The most desirable result is obtained from grinding efficiency and external mass transfer coefficient of 0.7 and 0.011 respectively, within 20 mixers. The model results present a good agreement with the experimental results. Average absolute deviation between experimental data and the modeling results is about 6%.
Bartle, K. D., Clifford, A. A., Hawthorne, S. B., Langenfeld, J. J., Miller, D. J. & Robinson, R. A. (1990). A model for dynamic extraction using supercritical fluid, Journal of Supercritical Fluids, 3, 143–149.
Berna, A.,Tarrega, A., Blasco, M. & Subirats, S. (2000). Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed, Journal of Supercritical Fluids, 18, 227–237.
Bernardo-Gil, M. G. & Casquilho, M. (2007). Modeling the supercritical fluid extraction of hazelnut and walnut oils. A.I.Ch.E., 53, 2980–2985.
del Valle, J. M. & dela Fuente, J. C. (2006). SupercriticalCO2 of oil seeds: review of kinetic and equilibrium models. Critical Reviews in Food Science and Nutrition, 46, 131–160.
Esquı´vel, M. M. & Bernardo-Gil, M. G., King, M. B. (1999). Mathematical models for supercritical extraction of olive husk oil. Journal of Supercritical Fluids, 16, 43–58.
Gaspar, F., Lu, T., Santos, R. & Al-Duri, B. (2003). Modelling the extraction of essential oils with compressed carbon dioxide. Journal of Supercritical Fluids, 25, 247–260.
Goodarznia, I. & Eikani, M. H. (1998). Supercritical CO2 extraction of essential oils: Modeling and simulation. Chemical Engineering Science, 53(7), 1387-1395.
Kandiah, M. & Spiro, M. (1990). Extraction of ginger rhizome: kinetic studies with supercritical carbon dioxide. International Journal of Food Science and Technology, 25, 328–338.
Langa, E., Cacho, J., Palavra, A. M. F., Burillo, J., Mainar, A. M. & Urieta, J. S. (2009). The evolution of hyssop oil composition in the supercritical extraction curve Modelling of the oil extraction process, Journal of Supercritical Fluids, 49 (1),37-44.
Lucas, S., Calvo, M. P., Garc´ıa-Serna, J., Palencia, C. & Cocero, M. J. (2007). Two-parameter model for mass transfer processes between solidmatrixes and supercritical fluids: Analytical solution, Journal of Supercritical Fluids, 41, 257–266.
Machmudah, S., Sulaswatty, A., Sasaki,M., Goto, M. & Hirose, T. (2006). Supercritical CO2 extraction of nutmeg oil: experiments and modeling. Journal of Supercritical Fluids, 39 (1), 30–39.
Mongkholkhajornsilp, D., Douglas, S., Douglas, P. L., Elkamel, A., Teppaitoon, W. & Pongamphai, S. (2005). SupercriticalCO2 extraction of nimbin from neem seeds- a modelling study.Journal of Food Engineering, 71, 331–340.
Naik, S. N., Lentz, H. & Maheshwari, R. C. (1989). Extraction of perfumes and flavours from plant material with liquid carbon dioxide under liquid–vapor equilibrium conditions. Fluid Phase Equilibrium, 49, 115–126.
Ngueyn, K., Barton, P. & Spencer, J. S. (1991). Supercritical carbon dioxide extraction of vanilla. Journal of Supercritical Fluids, 4, 40–46.
Reis-Vasco, E., Coelho, J. A. P., Palavra, A. M. F., Marrone, C. & Reverchon, E. (2000). Mathematical modelling and simulation of pennyroyal essential oil supercritical extraction. Chemical Engineering Science, 55, 2917–2922.
Reverchon, E., Donsi, G. & Osseo, L. S. (1993). Modeling of supercritical fluid extraction from herbaceous matrices. Industrial & Engineering Chemical Research, 32, 2721–2726
Rubio-Rodrı´guez, N., deDiego, S. M., Beltra´n, S., Jaime, I., Sanz, M.T. & Rovira, J. (2008). Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merlucciuscapensis-Merlucisparadoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. Journalof Supercritical Fluids, 47, 215–226.
Salgin, U., Doker, O. & Calimli, A. (2006). Extraction of sunflower oil with supercritical CO2: experiments and modeling. Journal of
Supercritical Fluids, 38, 326–331.
Sovova, H. (1994). Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chemical Engineering Science, 49, 409–414.
Sovova, H.(2005). Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation, Journal of Supercritical Fluids, 33, 35–52.
Subra, P., Castellani, S., Jestin, P. & Aoufi, A. (1998). Extraction of β-carotene with supercritical fluids experiments and modeling. Journal of Supercritical Fluids, 12, 261–269.
Wu, W. & Hou, Y. (2001). Mathematical modeling of extraction of egg yolk oil with supercritical CO2. Journal of Supercritical Fluids, 19, 149–159.