بررسی فعالیت آنتیاکسیدانی پروتئین هیدرولیز شده شاهدانه
محورهای موضوعی :
بیوتکنولوژی و میکروبیولوژی موادغذایی
شیوا گنجی جامه شورانی
1
,
علی محمدی ثانی
2
*
,
الهام مهدیان
3
,
سیده زهرا سیدالنگی
4
1 - گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
2 - گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
3 - گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
4 - گروه شیمی، واحد آزادشهر، دانشگاه آزاد اسلامی،آزادشهر، ایران.
تاریخ دریافت : 1398/11/23
تاریخ پذیرش : 1399/06/08
تاریخ انتشار : 1402/01/01
کلید واژه:
شاهدانه,
فعالیت آنتیاکسیدانی,
پپتید زیست فعال,
هیدرولیزآنزیمی,
چکیده مقاله :
در بین ترکیبات فراسودمند، پپتیدهای زیست فعال حاصل از هیدرولیز آنزیمی پروتئینها با دارا بودن ویژگیهای بسیاری مانند آلرژیزایی کم، کاهندگی فشار خون، نقش ضددیابت، ضدسرطان، منبع طبیعی و کارآمد آنتیاکسیدانها با فعالیت شلاتهکنندگی یونهای فلزی و بسیاری مزایای سلامتیبخش دیگر قرار دارند. شاهدانه با نام علمیCannabis sativa L. از قدیم نقش مهمی در تولید فرمولاسیونهای غذایی، دارو و فیبر داشته است. در این پژوهش، استخراج پروتئین از تفاله حاصل از روغنکشی شاهدانه انجام شد. سپس، اثر زمان فرآیند هیدرولیز آنزیمی با آلکالاز (min 300-60) بر درجه هیدرولیز، مهار رادیکالهای آزاد DPPH، ABTS، مهار رادیکال هیدروکسیل و قدرت احیاءکنندگی هیدرولیزشدهها بررسی گردید. ارزیابی آماری نتایج با با استفاده از طرح فاکتوریل و مقایسه میانگینها در 3 تکرار با آنالیز واریانس یکطرفه (ANOVA) انجام شد. نتایج هیدرولیز آنزیمی حاکی از افزایش درجه هیدرولیز با افزایش زمان فرآیند هیدرولیز آنزیمی بودند. فعالیت مهار رادیکالهای آزاد DPPH، ABTS، هیدروکسیل و قدرت احیاءکنندگی پروتئین شاهدانه پس از هیدرولیز آنزیمی بهترتیب از 85/7 به 04/52، از 13/47 به 03/80، از 13/30 به 96/72 و از 55/0 به 79/0 درصد افزایش یافتند. بطورکلی، هیدرولیز آنزیمی پروتئین خام تا 240 دقیقه حاکی از تاثیرمثبت فرآیند هیدرولیز بر افزایش ویژگیهای آنتیاکسیدانی و مهار انواع رادیکالهای آزاد بود.
منابع و مأخذ:
Ahmadi, F., Kadivar, M. and Shahedi, M. 2007. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food chemistry, 105 (1): 57-64.
Akoh, C.C. ed. 2017. Food lipids: chemistry, nutrition, and biotechnology. CRC press.
Ambigaipalan, P., Al-Khalifa, A. S. and Shahidi, F. 2015. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods, 18:1125-1137.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254.
Cacciuttolo, M. A., Trinh, L., Lumpkin, J. A. and Rao, G. 1993. Hyperoxia induces DNA damage in mammalian cells. Free Radical Biology and Medicine, 14(3): 267-276.
Champagne, C.P. and Fustier, P. 2007. Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18: 184-190.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46: 49-53.
Dorman, H. D., Koşar, M., Kahlos, K., Holm, Y. and Hiltunen, R. 2003. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. Journal of agricultural and food chemistry, 51(16): 4563-4569.
Fathi, M., Martín, Á. and McClements, D. J. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science and Technology, 39: 18-39.
Feyzi, S., Varidi, M., Zareb, F. and Varidi, M. J. 2015. Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Society of Chemical Industry, 15:3165-3176.
Gibson, G. R. and Williams, C. M. 2005. Functional foods. IFIS Publishing.
Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V. and Sharma, A. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1): 178-184.
Kim, J. W. and Minamikawa, T. 1997. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, biotechnology, and biochemistry, 61(1): 118-123.
14.Kristinsson, H. G. and Rasco, B.A. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43-81.
15. Li, X., Deng, J., Shen, S., Li, T., Yuan, M., Yang, R. and Ding, C. 2015. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake. Journal of food science and technology, 52 (9): 5681-5690.
Liu, W., Ye, A., Liu, W., Liu, C., Han, J. and Singh, H. 2015. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 175: 16-24.
Mao, X. Y., Cheng, X., Wang, X. and Wu, S. J. 2011. Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chemistry, 126: 484-490.
Nalinanon, S., Benjakul, S., Kishimura, H. and Shahidi, F. 2011. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124: 1354-1362.
Pihlanto, A. 2006. Antioxidative peptides derived from milk proteins. International Dairy Journal, 16: 1306-1314.
20. Sarabandi, K., Mahoonak, A. S., Hamishekar, H., Ghorbani, M. and Jafari, S. M. 2018. Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of food engineering, 237: 86-95.
Shahidi, F. and Zhong, Y. 2015. Measurement of antioxidant activity. Journal of functional foods, 18: 757-781.
Udenigwe, C. C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science and Technology, 36: 137-143.
Wu, H. C., Chen, H. M. and Shiau, C. Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomberaustriasicus). Food research international, 36: 949-957.
Xie, J., Du, M., Shen, M., Wu, T. and Lin, L. 2019. Physico-chemical properties, antioxidant activities and angiotensin- I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food chemistry, 270: 243-250.
Yin, S. W., Tang, C. H., Cao, J. S., Hu, E. K., Wen, Q. B. and Yang, X. Q. 2008. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food chemistry, 106 (3): 1004-1013.
You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B. 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10: 235-240.
You, L., Zhao, M., Regenstein, J.M. and Ren, J. 2010. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chemistry, 120: 810-816.
_||_