بررسی خطای پیشبینی نوسان شاخصهای صنعت با استفاده از مدلهای حرکت برآونی هندسی و گارچ
محورهای موضوعی :
دانش مالی تحلیل اوراق بهادار
ارشاد امامی
1
,
علیرضا حیدرزاده هنزائی
2
*
1 - دانشآموخته کارشناسی ارشد گروه مدیریت مالی، دانشکده مدیریت و علوم اجتماعی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استادیار و عضو هیات علمی گروه مدیریت مالی، دانشکده مدیریت و علوم اجتماعی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران (نویسنده مسوول)
تاریخ دریافت : 1400/12/12
تاریخ پذیرش : 1401/06/05
تاریخ انتشار : 1401/09/01
کلید واژه:
خطای پیشبینی نوسان,
مدل گارچ,
حرکت برآونی هندسی,
چکیده مقاله :
پژوهش حاضر، به بررسی عملکرد مدلهای گارچ مرتبه اول و مدل حرکت برآونی هندسی به عنوان مدلهای رقیب در پیشبینی نوسان روزانه پرداخته است. هدف پژوهش، پاسخ به این سوال است که آیا خطای پیشبینی نوسان در مدل حرکت برآونی هندسی تفاوت معنیداری نسبت به مدل گارچ دارد. جهت مطالعه مدلها، اطلاعات روزانه بازده لگاریتمی شاخص سی و هشت صنعت مختلف بورس اوراق بهادار تهران به عنوان جامعه آماری پژوهش در دوره زمانی فروردین 1395 تا شهریور 1399 در نظر گرفته شده است. بازه مذکور به دو بخش دوره برآورد (معادل چهار سال و ششماه داده روزانه) و دوره پیشبینی (برابر با ششماه آخر) تقسیمبندی شد. به صورت پنجره متحرک، متغیرهای هر مدل از روش حداکثر درستنمایی با اطلاعات چهار ساله برازش شده و بر این اساس پیشبینیهای روزانه نوسان برای دوره ششماهه آتی بدست میآید. نتایج پیشبینیها به کمک معیار ریشه میانگین مجذور خطا با یکدیگر مقایسه شده و هرکدام که دارای آماره کمتری باشد به این معناست که عملکرد بهتری را از خود نشان میدهد. مطابق نتایج پژوهش، مدل گارچ مرتبه اول تنها در شاخص سه صنعت مختلف دارای عملکرد بهتری است و در سایر شاخصهای مورد بررسی مدل حرکت برآونی هندسی پیشبینی بهتری از نوسان روزانه را ارائه میکند.
چکیده انگلیسی:
Current study compares forecasting capability of GARCH (1,1) against Geometric Brownian Motion, GBM, model for daily volatility of indices. The question is to study whether accuracy of GBM forecast differ significantly from its comparing model. Our data consists of 5.5 years (2015 – 2019) of daily logarithmic returns from 38 sector indices within Tehran Stock Exchange. The data was split into estimation period (5 years of daily data) and forecast period (daily data of the remaining 6 months). The competing models were estimated using maximum likelihood method and based on moving window approach, in which the length of estimating period was kept fixed, and projections were conducted on a daily basis. Root Mean Square Error, RMSE, approach was employed to measure forecasting error of each model. The one with less error will express more capability in forecasting daily volatility. With only three instances of a precise forecast, GARCH showed a relatively worse performance, in comparison to GBM..
منابع و مأخذ:
پاکیزه، کامران (1389)، «مدلسازی، پیشبینی تلاطم و بررسی رابطه آن با بازده در بورس اوراق بهادار تهران و بورسهای بینالملل»، پایاننامه تحصیلی برای اخذ مدرک دکتری در رشته حسابداری، دانشگاه علامه طباطبایی
پیمانی، مسلم (1394)، «مدلسازی شاخص کل بورس اوراق بهادار تهران با استفاده از معادلات دیفرانسیل تصادفی»، رساله دکتری رشته مدیریت مالی، دانشگاه علامه طباطبایی
خلیلی، ی (1383)، «پیشبینی واریانس سهام در گروه شرکتهای سرمایهگذار با استفاده از مدل گارچ»، پایاننامه دوره کارشناسیارشد، دانشکده مدیریت دانشگاه تهران
راعی، رضا؛ سعیدی، علی (1384)، کتاب «مبانی مهندسی مالی و مدیریت ریسک»، نشر سمت
سجاد، رسول؛ هدایتی، شراره (1392)، «مقایسه مدل تالطم تصادفی و مدلهای گارچ، از طریق محاسبه ارزش در معرض خطر»، نشریه مهندسی مالی و مدیریت اوراق بهادار (مدیریت پرتفوی)، شماره 15
سلیمانی صابر، سعید (1395)، «بررسی عملکرد مدلهای تلاطم تصادفی و گارچ در توضیحدهی تلاطم بازار سهام»، پایاننامه کارشناسی ارشد رشته اقتصاد، دانشگاه علامه طباطبایی
خالوزاده، ح؛ خاکی صدیق، ع (1384)، «مدل سازی و پیش بینی قیمت سهام با استفاده از معادلات دیفرانسیل تصادفی»، مجله تحقیقات اقتصادی، شماره 69
عباسینژاد، حسین؛ محمدی، شاپور (1393)، «مقایسه نوسانپذیری چندمتغیره گارچ، دیفرانسیل تصادفی، در براورد رابطه بین نرخ ارز و شاخص سهام»، نشریه دانش سرمایه گذاری، شماره 11
فتاحی، شهرام (1395)، «پیشبینی تلاطم بازده سهام در بورس اوراق بهادار تهران با استفاده از روش MCMC و الگوریتم متروپلیس هستینگ»، نشریه دانش مالی تحلیل اوراق بهادار (مطالعات مالی)، شماره 32
نصیری، ساسان (1394)، «پیشبینی ارزش در معرض ریسک با استفاده از تحلیل گشتاورهای مرتبه بالا برای فرآیندهای گارچ»، پایاننامه کارشناسی ارشد رشته مدیریت مالی، دانشگاه علامه طباطبایی
نظیفی نایینی، مینو؛ صمدی، سعید (1392)، «تحلیل عوامل موثر بر نوسان های قیمت طلا با استفادهاز مدل های رگرسیون سوئیچینگ مارکف و شبکه عصبی»، مجله پژوهش های اقتصاد پولی، مالی، شماره 26
Akgiray, V. (1989), “Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts”, vol. 62, pp. 55 – 80.
Alizadeh, S; Brandt. M.W; Diebold F.X. (2002), “Range-Based Estimation of Stochastic Volatility”, The Journal of Finance, Vol. 57, 1047 – 1091.
Andersen, T. G; Belzoni, L )2008), “Realized Volatility”, Working Paper, Federal Reserve Bank of Chicago, No 2008-14.
Andersen, T, G; Bollerslev, T; Diebold, F, X.; Labys, P (2003), “Modeling and Forecasting Realized Volatility” Econometrica Vol. 71, 579 – 625.
Andersen, T.G; Bollerslev, T (1998), “Answering the skeptics: yes, standard volatility models do provide accurate forecasts”, International Economic Review 39, 885 – 905.
Andersen, T.G; Bollerslev, T (1997), “Heterogeneous information arrivals and return volatility dynamics: Uncovering the long – run in high frequency returns”, Journal of Finance 52, 975 – 1005.
Baillie, R.T.; Bollerslev, T.; Mikkelsen, H.O. (1996), “Fractionally Integrated Generalized AutoRegressive Conditional Heteroskedasticity. Journal of Econometrics”, Vol. 74, pp. 3 – 30.
Becker, R; Clements, A. E.; White, S.I. (2007), “Does implied volatility provide any information beyond that captured in model-based volatility forecasts?” Journal of Banking & Finance, Vol: 31 No: 8, p. 2535 – 2549.
Bollerslev, T. 1986, “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, Vol. 31, No. 3, pp. 307 – 328.
Black, F. (1976), “Studies of Stock Price Volatility Changes”, Proceedings of the Business and Economics Section of the American Statistical Association, pp. 177 – 181.
Brooks, C. (2008), “Introductory Econometrics for Finance”, Second Edition, Cambridge University Press, New York.
Campbell J. Y.; Lo A. W.; MacKinlay A. C. (1997), “The Econometrics of Financial Markets”, Princeton University Press.
Chou, R.; Engle, R.F.; Kane, A. (1992), “Measuring Risk Aversion from Excess Returns on a Stock Index”. Journal of Econometrics, Vol. 52, p. 201 – 224
Christie, A. (1982), “The stochastic behavior of common stock variances: Value, leverage and interest rate effects”, Journal of Financial Economics Vol. 10, pp. 407 – 432.
Hansen P; Lunde A (2005), “A forecast comparison of volatility models: does anything beat a GARCH (1,1)?”, Applied Econometrics Vol. 20, p. 873 – 889.
Engle, R; Patton, A. (2001), “What good is a volatility model?”, Research paper, Quantitative Finance, Vol. 1, pp. 237 – 245.
Engle, R; NG V.K. (1993), “Measuring and Testing the Impact of News on Volatility”, The Journal of Finance, Vol. 48, pp. 1749 – 1778.
Engle, R. F.; Lilien, D. M.; Robins, R. (1987), “Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model”. Econometrica, Vol. 55(2), pp. 391 – 407.
Engle, R. F. (1982), “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation,” Econometrica, Vol. 50, p. 987 – 1007.
Hansen P; Lunde A (2001), “A Comparison of Volatility Models: Does Anything Beat a GARCH (1,1)?”, Universtiy of Wharton.
Figlweski, S. (1997), “Forecasting volatility”, Financial Markets, Institutions & Instruments, Vol. 6, No. 1, p. 1-88.
Glosten, L. R.; Jagannathan, R.; Runkle D. E. (1993), “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks”. Vol. 48, pp. 1779 – 1801.
Gustafsson, R; Quinones, A (2014), “Volatility Forecasting on the Stockholm Stock
Exchange”, JONKOPING International Business School
Granger, C.W; Poon, S-H. (2003), “Forecasting financial market volatility: a review”, Journal of Economic Literature 41, 478-539.
Gregoriou, N, G. (2008), “Encyclopedia of Alternative Investments” CRC Press, Taylor & Francis Group, Boca Raton, Florida.
Hull, J.C. (2007), “Options, Futures and Other Derivatives” 6th edition, Prentice Hall.
Jarque, C. M; Bera, A. K. (1987), “An efficient large-sample test for normality of observations and regression residuals”, International Sltatistical Review,Vol 55, No 2, pp.163-172.
Ladokhin, S (2009), “FORECASTING VOLATILITY IN THE STOCK MARKET”, VU University Amsterdam.
Mandelbrot, B (1963), “The Variation of Certain Speculative Prices”, The Journal of Business, Vol. 36, No. 4, p. 394-419.
Martens, M; van Dijk, D (2007), “Measuring volatility with the realized range”, Journal of Econometrics, 138, 181-207.
Meng, Y; Rafikova, N (2006), “FORECASTING VOLATILITY: EVIDENCE FROM THE SWEDISH STOCK MARKET”, Stockholm School of Economics.
Merton, R. C. (1980), “On estimating the expected return on the market: An exploratory investigation”, Journal of Financial Economics, Vol. 8, pp. 323-361.
Montgomery, D.C.; Johnson, L.A.; Gardiner, J.S. (1990), “Forecasting and Time Series Analysis”, 2nd Edition, McGraw-Hill.
Nelson, D.B. (1991), “Conditional heteroskedasticity in asset returns: a new approach”, Econometrica Vol. 59, pp. 347 – 370.
Oksendal, B (2003), “Stochastic Differential Equations. An Introduction with Applications”, 6th edition, Springer-Verlag (Universitext).
Pagan, Adrian R; Schwert, William G (1990), “Alternative models for conditional stock volatility”, Journal of Econometrics 45, 267-290
Parkinson, M (1980), extreme value method for estimating the variance of the rate of return”, Journal of Business 53, 61–65.
S; Shackleton, M.B; Taylor, S; Xu X. (2004), “Forecasting currency volatility: A comparison of implied volatilities and AR (FI) MA models”. Journal of Banking & Finance, 28, 2541-2563.
Schwert, G.W. (1989), “Why Does Stock Volatility Change Over Time?”. Journal of Finance Vol. 44, pp. 1115 – 1153.
Taylor S. (1986), “Modelling financial time series”, John Wiley & Sons, Chichester.
Vodenska – Chitkushev, Irena (2009), “INTERDISCIPLINARY APPROACHES TO UNDERSTANDING A ND FORECASTING VOLATILITY”. Dissertation, Boston university
Yu, J. 2002 Forecasting Volatility in the New Zealand Stock Market, Applied Finan. Econ. 12, pp. 193-202.
_||_