بهینهسازی سبد سرمایهگذاری تحت نظریه اعتبار فازی با استفاده از مدل میانگین-ارزش در معرض ریسک مشروط
محورهای موضوعی : دانش مالی تحلیل اوراق بهادارسیدبابک ابراهیمی 1 * , امیرسینا جیرفتی 2 , متین عبدی 3
1 - استادیار، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجهنصیرالدین طوسی تهران، تهران، ایران
2 - دانشجوی کارشناسی ارشد مهندسی مالی، دانشگاه صنعتی خواجهنصیرالدین طوسی تهران، تهران، ایران.
3 - دانشجوی کارشناسی ارشد مهندسی مالی، دانشگاه صنعتی خواجهنصیرالدین طوسی تهران، تهران، ایران.
کلید واژه: مسئله انتخاب سبد سرمایهگذاری, ارزش در معرض ریسک مشروط, نظریه اعتبار فازی, مدل میانگین-ارزش در معرض ریسک ,
چکیده مقاله :
با توجه به غیر قطعی بودن دادههای مالی استفاده از روشهای فازی باعث دقت بیشتری در مدلسازی میشود. همچنین استفاده از سنجهی ریسک ارزش در معرض خطر مشروط به اینکه اندازه ضرر را به سرمایهگذار نشان میدهد، به تصمیمگیری بهتر کمک میکند. در این مقاله با استفاده از سنجه ارزش در معرض ریسک مشروط و تخمین آن بهوسیله نظریه اعتبار فازی اقدام به بهینهسازی سبد سرمایهگذاری شده است. به این منظور، بازده انتظاری پرتفوی به وسیله میانگین اعتبار فازی بهدست آمده و سپس ارزش در معرض ریسک مشروط به وسیله همین نظریه تخمین زده شدهاست. در مرحله بعد با درنظر حجم معاملات هر دارایی به شکل یک عدد فازی ذوزنقهای و بهدست آوردن یک رابطه خطی بر مبنای نظریه اعتبار، محدودیت نقدشوندگی در مدل درنظر گرفته میشود. همچنین جهت کاراتر شدن مدل، محدودیتهای کف و سقف نسبتهای سرمایهگذاری و محدودیت کاردینالیتی در مدل درنظر گرفته شدهاست. مدل ارائه شده با توجه به استفاده از سنجه ریسک ارزش در معرض ریسک مشروط و همچنین درنظر گرفتن محدودیتهای کارا، میتواند به عنوان مدلی مناسب جهت انتخاب سبد سرمایهگذاری معرفی شود. در نهایت نیز جهت پیادهسازی مدل، یک مثال عددی با استفاده از 10 سهم از بورس اوراق بهادار تهران در سال 94 که به صورت تصادفی انتخاب شدهاند، ارائه شده است.
This paper develops a fuzzy portfolio selection problem that minimizes conditional value-at-risk (CVaR) and estimates CVaR by fuzzy credibility theory and also calculates expected return by fuzzy credibility mean. Using fuzzy techniques makes the model more precise and accurate due to uncertainty of financial data. The use of CVaR helps investors make better decisions because it indicates the size of loss. This study considers some constraints for model including liquidity, cardinality, minimum and maximum investment proportion. The liquidity constraint is measured by turnover of each asset as a trapezoidal fuzzy number. The liquidity constraint converts to a linear constraint by using fuzzy credibility theory. Using CVaR as a risk measurement and efficient constraints makes the model appropriate and adequate for portfolio selection. Finally, a numerical example is provided by 10 stocks chosen from Tehran Stock Exchange Market in 2015 and it shows the effectiveness and applicability of the proposed model
* Almeida, R. J., & Kaymak, U. (2009). Probabilistic fuzzy systems in value‐at‐risk estimation. Intelligent Systems in Accounting, Finance and Management, 16(1‐2), 49-70.
* Dai, C., Cai, X. H., Cai, Y. P., Huo, Q., Lv, Y., & Huang, G. H. (2014). An interval-parameter mean-CVaR two-stage stochastic programming approach for waste management under uncertainty. Stochastic environmental research and risk assessment, 28(2), 167-187.
* Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1), 34-105.
* Gao, J., Zhang, X., & Wang, Q. (2011, July). Fuzzy portfolio selection based on Mean-CVaR models. In 2011 International Conference on Business Computing and Global Informatization (pp. 98-100). IEEE.
* Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Fuzzy portfolio optimization. Studies in fuzziness and soft computing, 316.
* Huang, X. (2010). What Is Portfolio Analysis. In Portfolio Analysis (pp. 1-9). Springer Berlin Heidelberg.
* Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management science, 37(5), 519-531.
* Liu, B. Uncertainty Theory: An Introduction to its Axiomatic Foundations. 2004.
* Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE transactions on Fuzzy Systems, 10(4), 445-450.
* Liu, Y., & Gao, J. (2007). The independent of fuzzy variables in credibility theory and its applications. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15, 1-20.
* Li, L., Li, J., Qin, Q., & Cheng, S. (2013, October). Credibilistic conditional value at risk under fuzzy environment. In Advanced Computational Intelligence (ICACI), 2013 Sixth International Conference on (pp. 350-353). IEEE.
* Mandelbrot, B. B. (1997). The variation of certain speculative prices. InFractals and Scaling in Finance (pp. 371-418). Springer New York.
* Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
* Markowitz, H. M. (1991). Foundations of portfolio theory. The journal of finance, 46(2), 469-477.
* Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2, 21-42.
* Speranza, M. G. (1993). Linear programming models for portfolio optimization.
* Xu, Z., Shang, S., Qian, W., & Shu, W. (2010). A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers. Expert Systems with Applications, 37(3), 1920-1927.
* Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
* Zhang, X., & Sun, W. (2010, October). Mean-CVaR models for fuzzy portfolio selection. In Intelligent System Design and Engineering Application (ISDEA), 2010 International Conference on (Vol. 1, pp. 928-930). IEEE.
* Zhu, H., & Zhang, J. (2009, November). A credibility-based fuzzy programming model for APP problem. In Artificial Intelligence and Computational Intelligence, 2009. AICI'09. International Conference on (Vol. 1, pp. 455-459). IEEE
_||_