بررسی پاسخهای مرگ و میر ماهی کپور معمولی و سفید دریای خزر در مواجهه با محلول ضدعفونی کننده کلردار خانگی (هیپوکلریت سدیم)
محورهای موضوعی : مدیریت محیط زیستسید علی اکبر هدایتی 1 , سعید شهبازی ناصرآباد 2 * , حامد غفاری فارسانی 3
1 - دانشیار دانشکده شیلات و محیط زیست، دانشگاه کشاورزی و منابع طبیعی، گرگان، ایران.
2 - باشگاه پژوهشگران جوان و نخبگان، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران.
3 - باشگاه پژوهشگران جوان و نخبگان، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.
کلید واژه: آلودگی, هیپوکلریت سدیم, کپور معمولی (Cyprinus carpio), سفید دریای خزر (Rutilus frisii, غلظت کشنده, مرگ و میر,
چکیده مقاله :
زمینه و هدف: ورود شوینده ها از طریق فاضلاب خانگی به اکوسیستمهای آبی میتواند اثرات نامطلوبی بر حیات آبزیان داشته باشد. در این تحقیق سمیت حاد هیپوکلریت سدیم (NaOCl)، بر روی ماهیان 1 ± 16 گرمی (میانگین ± SD) کپور معمولی (Cyprinus carpio) و 1 ± 5/3 گرمی سفید دریای خزر (Rutilus frisii Kutum) به منظور تعیین غلظت کشنده 50% از جمعیت ماهیان در 96 ساعت، مطالعه گردید. روش بررسی: آزمایش به صورت ساکن (Static) و بر اساس روش استانداردO.E.C.D به مدت 4 شبانه روز (96 ساعت) انجام گرفت. پس از انجام آزمایش های ابتدایی به منظور یافتن محدوده کشندگی، آزمایش اصلی با انتخاب 5 تیمارهای نهایی (0، 15، 30، 60 و120 میلی گرم بر لیتر) برای کپور معمولی و 6 تیمار نهایی (0، 5، 10، 20، 40 و80 میلی گرم بر لیتر) برای ماهی سفید، هرکدام با 3 تکرار انجام پذیرفت و در نهایت براساس نتایج به دست آمده و با استفاده از آنالیز پروبیت، مقادیر LC1، LC10، LC30، LC50، LC70، LC90 و LC99 در 24، 48، 72 و 96 ساعت بر روی ماهیان اندازه گیری شد. یافتهها: در مطالعه حاضر صد در صد مرگ و میر بچه ماهیان سفید در غلظت mg L-1 80 تنها ساعاتی پس از در معرض قرارگیری آلاینده اتفاق افتاد. ولی این فرایند در ماهی کپور معمولی در غلظت mg L-1120 پس از گذشت 30 ساعت از شروع آزمایش رخ داد. سمیت حاد (LC50 96-h) هیپوکلریت سدیم برای ماهی کپور معمولی و سفید به ترتیب برابر با 48/39 و 77/23 میلی گرم بر لیتر به دست آمد. بحث و نتیجهگیری: پژوهش حاضر نشان داد که این شوینده برای ماهیان مورد آزمایش خطرناک بوده و ماهی سفید نیز در برابر هیپوکلریت سدیم بسیار آسیب پذیرتر از کپور معمولی می باشد
Abstract Background and Objective: Release of detergents via urban sewages into aquatic ecosystems can have adverse effects on aquatic life. In this study, the acute toxicity of NaOCl on Common carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) with average weights of 16±1 g (mean ± SD) and 3.5±1 g, respectively, was investigated to determine 50% lethal concentration of the fish populations in 96 hours. Method: Experiments were carried out in a static base according to O.E.C.D standard method in 4 days (96 hours). After primal experiments to explore the lethal range, the main research was performed by selection of 5 final treatments (0, 15, 30, 60, 120 mg L-1) for Cyprinus carpio and 6 final treatments (0, 5, 10, 20, 40, 80 mg L-1) for Rutilus frisii kutum, each one with 3 repeats. Eventually according to the results obtained by probit analyses, amount of LC1, LC10, LC30, LC50, LC70, LC90 and LC99 were calculated in fishes during 24, 48, 72 and 96 hours. Findings: In the present study, 100% of mortality of Caspian kutum in concentration of 80 mg L-1, happened only within the first hours they exposed to pollution. However, this process in Common carp in concentration of 120 mg L-1, happened after 30 hours passed from starting the experiment. The acute toxicity of Common carp and Caspian kutum were 39.48 and 23.77 mg L-1 respectively. Conclusion: The present study showed that this washer is dangerous for fishes and also Rutilus frisii kutum is much more vulnerable to NaOCl in comparison with Cyprinus carpio.
1- Konar, S.K., Mullick, S. 1993. Pollutional hazards of coastal waters by petroleum products, detergents and heavy metals. Environment and ecology. Kalyani, 11(3): 688-690.
2- بابایی ، ه. خداپرست، ح، «بررسی و تعیین غلظت آلودگی شوینده آلکیل بنزن سولفونات خطی در آب رودخانه سفید رود (استان گیلان)» پاییز 1389. مجله علوم آبزیان سال اول، شماره سوم، ص 35-45.
3- Kimerle, R.A. 1989. Aquatic and terrestrial ecotoxicology of linear alkyl benzene sulfonate. Tenside Surfactants Detergents, 26: 169-176.
4- Rand, G.M. 1995. Fundamentals of aqutic toxicology. Taylor & Francis. United States; pp 859-882.
5- Karr, J.R. 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications, 1: 66-84.
6- Nimkerdphol, K., Nakagawa, M. 2008. Effect of sodium hypochlorite on zebrafish swimming behavior estimated by fractal dimension analysis. Journal of bioscience and bioengineering, 105(5): 486-492.
7- Emmanuel, E., Keck, G., Blanchard, J. M., Vermande, P., & Perrodin, Y. 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment international, 30(7): 891-900.
8- de Paiva Magalhães, D., da Cunha, R. A., dos Santos, J. A. A., Buss, D. F., Baptista, D. F. 2007. Behavioral response of Zebrafish Danio rerio Hamilton 1822 to sublethal stress by sodium hypochlorite: ecotoxicological assay using an image analysis biomonitoring system. Ecotoxicology, 16(5): 417-422.
9- Richardson M.L., Bowron J.M. 1985. The fate of pharmaceutical chemicals in the aquatic environment. Journal of Pharmacy and Pharmacology, 37: 1– 12.
10- Elia, A.C., Anastasi, V., & Dörr, A. J. M. 2006. Hepatic antioxidant enzymes and total glutathione of (Cyprinus carpio) exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere, 64(10): 1633-1641.
11- Francisco A.A, Eugenio L., Megdalena D.A. 1994. Acute toxicity of the herbicide glyposate to fish. Chemosphere, 28: 735-745.
12- Vazirzadeh, A., Mojazi Amiri, B., Yelghi, S., Hajimoradloo, A., Nematollahi, M.A., Mylonas, C.C. 2011. Comparison of the effects of different methods of mammalian and salmon GnRHa administration on spawning performance in wildcaught female carp (Cyprinus carpio carpio) from the Caspian Sea. Aquaculture. 320: 123-12.
13- Ghelichi, A., Akrami1, R., Bandani, G.h., Jorjani, S. 2010. Reproduction biology of female common carp (Cyprinus carpio) in southeast of the Caspian Sea (Miankale Fishing Station). Iranian Journal of Natural Resources, 63: 197-208.
14- Tamarin, A. E., kuliev, Z.M. 1989. Black sea roach. In: Caspian sea: Ichthyofauna and commercial stocks, Nauka press. Moscow, pp. 144-145.
15- Yousefian, M., Mosavi, H., 2008. Spawning of South Caspian Kutum (Rutilus frisii kutum) in Most Migratory River of South Caspian Sea. Asian Journal of Animal and Veterinary Advances, 3: 437-442.
16- Arjmandi, R., Tavakol, M., Shayeghi, M. 2010. Determination of organophosphorus insecticide residues in the rice paddies. International Journal of Environmental Science and Technology, 7: 175-182.
17- Paykan Heyrati, F., Mostafavi, H., Toloee, H., Dorafshan, S. 2007. Induced spawning of kutum, Rutilus frisii kutum (Kamenskii, 1901) using (D-Ala6, Pro9-NEt) GnRHa combined with domperidone. Aquaculture, 265: 288–293.
18- OECD (Organisation for Economic Co-operation and Development). 1993. OECD Guidelines for Testing of Chemicals OECD, Organization for Economic. Paris.
19- Heath, A.G. 1995. Water pollution and fish physiology. CRC press.
20- Tehranifard, A., Sharif Fazeli, M., Piri, M. 2002 Determination of LC50 of Diazinon toxin and linear anionic detergents on Rutilus frisii kutum. Journal of Marine Sciences and Technology, 1(1): 55-59.
21- Curtis, M.W., Copeland, T. L., Ward, C. H. 1979. Acute toxicity of 12 industrial chemicals to freshwater and saltwater organisms. Water Research, 13(2): 137-141.
22- Svoboda, M., Luscova, V., Drastichova, J., Ilabek, V. 2001. The effect of diazinon on hematological indices of common carp (Cyprinus carpio). Acta Veterinaria Brno, 10: 457-465.
23- Svobodova, Z., Luscova, V., Drastichova, J., Svoboda, M., Zlabek, V. 2003. Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio). Acta Veterinaria Brno, 72: 79-85.
24- López-Galindo, C., Garrido, M. C., Casanueva, J. F., Nebot, E. 2010. Degradation models and ecotoxicity in marine waters of two antifouling compounds: Sodium hypochlorite and an alkylamine surfactant. Science of the total environment, 408(8): 1779-1785.
25- Linden, E., Bengtsson, B. E., Svanberg, O., Sundström, G., Board, N. S. E. P. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (Alburnus alburnus) and the harpacticoid Nitocra spinipes. Chemosphere, 8(11): 843-851.
26- Abel, P.D. 1974. Toxicity of synthetic detergents to fish and aquatic invertebrates. Journal of fish Biology, 6(3): 279-298.
27- Chattopadhyay, D. N., Konar, S. K. 1991. Removal of toxicity of linear alkyl benzene sulfonate through algae culture. Environment and Ecology, 9(2): 342-344.
28- Baer, K. N. 1996. Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment. International Journal of Toxicology, 15(5): 453-454.
29- Weis, J.S., Candelmo, A. 2012. Pollutants and fish predator/prey behavior: A review of laboratory and field approaches. Current Zoology, 58(1): 9-20.
30- Gerhardt, A. 2007. Aquatic behavioral ecotoxicology: Prospects and limitations. Human and Ecological Risk Assessment, 13: 481–491.
31- Gerhardt, A. 1998. Whole effuent toxicity testing with Oncorhynchus mykiss (Walbaum 1792) survival and behavioral response to a dilution series of a mining effluent in South Africa. Archives of Environmental Contamination and Toxicology, 35: 309–316.
32- Olla, B.L., Pearson, W.H., Studholme, A.L. 1980. Applicability of behavioral measures in environmental stress assessment. Rapports et procès-verbaux des réunions / Conseil permanent international pour l'exploration de la mer, 179: 162–173.
33- Eknath, C.N. 2013. Studies on Toxicity of Detergents to Mystus montanus and Change in behaviour of Fish. Research Journal of Animal, Veterinary and Fishery Sciences, 1(9): 14-19.
34- Ndome, C. B., Mowang, D. A., Ayibaemi, T.T. 2013. Comparative acute toxicity of local detergents (Omo and Ariel) on fingerlings of the Clarias gariepinus♀ x Heterobranchus longifilis♂ hybrid. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux), 6: 415-420.