تجزیه زیستی نیکوتین توسط باکتری نمک دوست نسبی Halomonas sp. strain ND9، جدا شده از دریاچه نمکی بختگان فارس
محورهای موضوعی :
مدیریت محیط زیست
مراحم آشنگرف
1
*
,
محمد مجدی
2
1 - دانشیار میکروبیولوژی صنعتی، عضو هیات علمی دانشگاه کردستان، دانشکده علوم پایه، گروه علوم زیستی، سنندج، ایران*(مسوول مکاتبات).
2 - دانشیار بیوتکنولوژی گیاهی، عضو هیات علمی دانشگاه کردستان، دانشکده کشاورزی، گروه زراعت و اصلاح نباتات، سنندج، ایران
تاریخ دریافت : 1393/05/02
تاریخ پذیرش : 1394/04/04
تاریخ انتشار : 1397/01/01
کلید واژه:
تحمل پذیری,
حذف زیستی,
نیکوتین,
.Halomonas sp. strain ND9,
چکیده مقاله :
زمینه و هدف: نیکوتین از سمی ترین آلکالوئیدهای مرتبط با صنایع توتون است که با توجه به مشکلات درمانی و زیست محیطی ناشی از حضور آن در محیط های طبیعی، تجزیه زیستی آن با استفاده از میکروارگانیسم ها توجه زیادی را به خود جلب کرده است. هدف از مطالعه اخیر، غربال گری باکتریهای بومی نمک دوست نسبی با فابلیت تجزیه کنندگی نیکوتین و بررسی امکان استفاده از این باکتریها به عنوان کاتالیست در جهت پالایش نیکوتین از محیط های آلوده است.
روش بررسی: انتخاب باکتری های نمک دوست با قابلیت تجزیه کنندگی نیکوتین در سه مرحله غنی سازی، توانایی در مصرف نیکوتین به عنوان تنها منبع کربن و ازت و براساس الگوی تحمل پذیری انجام شد. جدایه نمک دوست ND9 که دارای بالاترین قابلیت در حذف زیستی نیکوتین بود، براساس تست های ریخت شناسی، بیوشیمایی و تکثیر نواحی حفاظت شده 16s rRNA شناسایی شد. سنتتیک رشد و میزان حذف نیکوتین با استفاده از اسپکتروفتومتری و کروماتوگرافی مایع با عملکرد بالا (HPLC) مورد ارزیابی قرار گرفت.
یافتهها: Halomonas sp. strain ND9 (با کد شناسایی KM077028 در بانک ژنی)، به عنوان قوی ترین باکتری در تحمل پذیری و مصرف نیکوتین برگزیده شد. فعالیت متابولیکی بالا در کشت های رویشی سویه ND9 منجر به حذف 92 درصدی نیکوتین در محیط های پایه نمکی با غلظت 2 گرم در لیتر نیکوتین، به عنوان تنها منبع کربن و ازت، در طی 96 ساعت گرماگذاری شد.
بحث و نتیجه گیری: در این پژوهش، برای اولین بار پتانسیل باکتری های نمک دوست در فرآیند نیکوتین زدایی بررسی شد. با توجه به پتانسیل سویه باکتری نمک دوست نسبیHalomonas sp. strain ND9 در حذف زیستی نیکوتین، جداسازی و شناسایی باکتریهای نمک دوست نسبی بهعنوان زیست کاتالیزگر طبیعی ایمن در جهت پاکسازی زیستی نیکوتین پیشنهاد میشود.
چکیده انگلیسی:
Background and Objective: Nicotine is a highly toxic alkaloid which can be found in tobacco processing industry. Due to the serious environmental problems and therapeutic concerns which have occurred because of presence of toxic nicotine in the environment, biodegradation of this compound by microorganisms has received considerable attention. The objective of the present study was to screen the moderately halophilic bacteria which are able to degrade nicotine and to evaluate the possibility of using the bacterial biocatalysts to clean up nicotine in contaminated environments.
Method: Screening and selection of halophilic bacteria degrading nicotine has performed in three separate steps using enrichment culture technique, nicotine as the sole carbon and nitrogen source, and tolerance patterns. The best nicotine-degrading bacterial isolate (designated as strain ND9) was characterized on the basis of morphological and biochemical phenotypes and 16S rRNA sequencing. Growth kinetics and the removal rate of nicotine were evaluated using spectrophotometry and high performance liquid chromatography (HPLC).
Findings: According to the results obtained, growing cultures of Halomonas sp. strain ND9 (accession no. KM077028) showed the highest tolerance to nicotine and also degraded over 92% of nicotine (initial concentration of 2 g/L) as the sole source of carbon and nitrogen after 96 h incubation time.
Discussion and Conclusions: The present work describes the potential of moderately halophilic bacteria to be used in a de-nicotination process for the first time. Given the potential of Halomonas sp. strain ND9 in the bio-removal of nicotine, isolation and characterization of moderately halophilic bacteria as green bio-catalysts for their application in the bio-degradation of nicotine has been proposed.
منابع و مأخذ:
Doolittle, DJ., Winegar, R., Lee, CK., Caldwell, WS., Hayes, AW., Bethizy, JD., 1995. The genotoxic potential of nicotine and its major metabolites. Mutation Research, Vol. 344, No. 3, pp. 95–102
Siegmund, B., Leitner, E., Pfannhauser, W., 1999. Development of simple sample preparation technique for gas chromatographic - mass spectrometric determination of nicotine in edible nightshades (Solanaceae). Journal of Chromatography A, Vol. 840, No. 2, pp. 249-260
Samuelsson, G., 1999. Drugs of Natural Origin. A textbook of pharmacognosy, Swedish Pharmaceutical Society, Stockholm, pp. 551
Soloway, SB., 1976. Naturally occurring insecticides. Environmental Health Perspectives, Vol. 14, No.2, pp. 109-117
Sabha, M., Tanus-Santos, JE., Toledo, JC., Cittadino, M., Rocha, JC., Moreno, H., 2000. Transdermal nicotine mimics the smoking-induced endothelial dysfunction. Clinical Pharmacology Therapeutics, Vol. 68, No. 2, pp. 167–174
Civilini, M., Domenis, C., Sebastianutto, N., Bertoldi, M., 1997. Nicotine decontamination of tobacco agro-industrial waste and its degradation by microorganisms. Waste Management Research, Vol. 15, No. 4, pp. 349–358
Zheng, KL., Yu, DM., 2004. A status of the comprehensive utilization of discarded tobacco leaves. Journal of Chongqing Jianzhu University,Vol. 3, No. 2, pp. 61–64
Lenkey, AA., 1989. Nicotine removal process and product produced thereby; mixing with alkaline agent in aerobic environment. United States Patent No. 4, pp. 848-373
Liu, Y., Wang, L., Huang, K., Wang, W., Nie, X., Jiang, Y., Li, P., Liu, S., Xu, P., Tang, H., 2014. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1. PLOS ONE, Vol. 9, No.1, pp. e84399
Gherna, RL., Richardson, SH., Rittenberg, SC., 1965. The bacterial oxidation of nicotine.VI. Themetabolism of 2, 6-dihydroxypseudooxynicotine. Journal of Biological Chemistry, Vol. 240, No. 9, pp. 3669–3674
Ruan, AD., Min, H., Peng, X., Huang, Z., 2005. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Research in Microbiology, Vol. 156, No. 5, pp. 700–706
Ruan, A., Min, H., Zhu, W., 2006. Studies on biodegradation of nicotine by Arthrobacter sp. strain HF-2. Journal of Environmental Science and Health B, Vol. 41, No. 7, pp. 1159-1170
Wang, SN., Liu, Z., Tang, HZ., Meng, J., Xu, P., 2007. Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology, Vol. 153, No. 5, pp. 1556-1565
Yuan, YJ., Lu, ZX., Huang, LJ., Li, Y., Lu, FX., Bie, XM., Teng, YQ., Lin, Q., 2007. Biodegradation of nicotine from tobacco waste extract by Ochrobactrum intermedium DN2. Journal of Industrial Microbiology and Biotechnology Vol. 34, No. 8, pp. 567-570
Chen, CM., Li, XM., Yang, JK., Gong, XW., Li, B., Zhang, KQ., 2008. Isolation of nicotine-degrading bacterium Pseudomonas sp. nic22, and its potential application in tobacco processing. International Biodeterioration and Biodegradation, Vol. 62, No. 3, pp. 226–231
Wei, HL., Lei, LP., Xia, ZY., Liu, XZ., 2008. Characterization of a novel aerobic nicotine-biodegrading strain of Pseudomonas putida. Annals of Microbiology, Vol. 58, No. 1, pp. 41-45
Gong, XW., Yang, JK., Duan, YQ., Dong, JY., Zhe, W., Wang, L., Li, QH., Zhang, KQ., 2009. Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Research in Microbiology, Vol. 160, No. 3, pp. 200–204
Wang, SN., Liu, Z., Xu, P., 2009. Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33. Journal of Applied Microbiology, Vol. 107, No. 3, pp. 838-847
Zhong, W., Zhu, C., Shu, M., Sun, K., Zhao, L., Wang, C., Ye, Z., Chen, J., 2010. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology. Vol. 101, No. 18, pp. 6935–6941
Li, HJ., Duan, YQ., Ma, GH., Lei, LP., Zhang, KQ., Yang, JK., 2011. Isolation and characterization of Acinetobacter sp. ND12 capable of degrading nicotine. African Journal of Microbiology Research, Vol. 5, No. 11, pp. 1335–1341
Ventosa, A., Nieto, JJ., Oren, A., 1998. Biology of moderately halophilic aerobic bacteria. Microbiol.
Molecular Biology Reviews, Vol. 62, No. 2, pp. 504–544
Nieto, JJ., Fernandez-Castillo, R., Marquez, MC., Ventosa, A., Quesada, E., Ruiz-Berraquero, F., 1989. Survey of metal tolerance in moderately halophilic eubacteria. Applied Environmental Microbiology, Vol. 55, No. 9, pp. 2385–2390
Sambrook, J., Fritsch, EF., Maniatis, T., 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Springs Harbor Laboratory, Cold Spring Harbor, NY.
Al-Bayati, FA., 2008. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. Journal of Ethnopharmacology, Vol. 116, No. 3, pp. 403-406
Smibert, RM., Krieg, NR., 1994. Phenotypic characterization. In: Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R. (Eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp. 607–654
Leong, DU., Greisen, KS., 1993. PCR detection of bacteria found in cerebrospinal fluid. In: Persing DH, Smith TF, Tenover FC and White TJ. (eds.) Diagnostic Molecular Microbiology: Principles and Applications. Mayo Foundation, Rochester, pp. 300–309
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F., 2011. Use of growing cells of Pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugenol. Iranian Journal of Pharmaceutical Research, Vol. 10, No. 4, pp. 749-757
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, Vol. 30, No. 12, pp. 2725-2729
Oren, A., 2010. Industrial and environmental applications of halophilic microorganisms. Environmental Technology, Vol. 31, No. 8, pp. 825-834
_||_
Doolittle, DJ., Winegar, R., Lee, CK., Caldwell, WS., Hayes, AW., Bethizy, JD., 1995. The genotoxic potential of nicotine and its major metabolites. Mutation Research, Vol. 344, No. 3, pp. 95–102
Siegmund, B., Leitner, E., Pfannhauser, W., 1999. Development of simple sample preparation technique for gas chromatographic - mass spectrometric determination of nicotine in edible nightshades (Solanaceae). Journal of Chromatography A, Vol. 840, No. 2, pp. 249-260
Samuelsson, G., 1999. Drugs of Natural Origin. A textbook of pharmacognosy, Swedish Pharmaceutical Society, Stockholm, pp. 551
Soloway, SB., 1976. Naturally occurring insecticides. Environmental Health Perspectives, Vol. 14, No.2, pp. 109-117
Sabha, M., Tanus-Santos, JE., Toledo, JC., Cittadino, M., Rocha, JC., Moreno, H., 2000. Transdermal nicotine mimics the smoking-induced endothelial dysfunction. Clinical Pharmacology Therapeutics, Vol. 68, No. 2, pp. 167–174
Civilini, M., Domenis, C., Sebastianutto, N., Bertoldi, M., 1997. Nicotine decontamination of tobacco agro-industrial waste and its degradation by microorganisms. Waste Management Research, Vol. 15, No. 4, pp. 349–358
Zheng, KL., Yu, DM., 2004. A status of the comprehensive utilization of discarded tobacco leaves. Journal of Chongqing Jianzhu University,Vol. 3, No. 2, pp. 61–64
Lenkey, AA., 1989. Nicotine removal process and product produced thereby; mixing with alkaline agent in aerobic environment. United States Patent No. 4, pp. 848-373
Liu, Y., Wang, L., Huang, K., Wang, W., Nie, X., Jiang, Y., Li, P., Liu, S., Xu, P., Tang, H., 2014. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1. PLOS ONE, Vol. 9, No.1, pp. e84399
Gherna, RL., Richardson, SH., Rittenberg, SC., 1965. The bacterial oxidation of nicotine.VI. Themetabolism of 2, 6-dihydroxypseudooxynicotine. Journal of Biological Chemistry, Vol. 240, No. 9, pp. 3669–3674
Ruan, AD., Min, H., Peng, X., Huang, Z., 2005. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Research in Microbiology, Vol. 156, No. 5, pp. 700–706
Ruan, A., Min, H., Zhu, W., 2006. Studies on biodegradation of nicotine by Arthrobacter sp. strain HF-2. Journal of Environmental Science and Health B, Vol. 41, No. 7, pp. 1159-1170
Wang, SN., Liu, Z., Tang, HZ., Meng, J., Xu, P., 2007. Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology, Vol. 153, No. 5, pp. 1556-1565
Yuan, YJ., Lu, ZX., Huang, LJ., Li, Y., Lu, FX., Bie, XM., Teng, YQ., Lin, Q., 2007. Biodegradation of nicotine from tobacco waste extract by Ochrobactrum intermedium DN2. Journal of Industrial Microbiology and Biotechnology Vol. 34, No. 8, pp. 567-570
Chen, CM., Li, XM., Yang, JK., Gong, XW., Li, B., Zhang, KQ., 2008. Isolation of nicotine-degrading bacterium Pseudomonas sp. nic22, and its potential application in tobacco processing. International Biodeterioration and Biodegradation, Vol. 62, No. 3, pp. 226–231
Wei, HL., Lei, LP., Xia, ZY., Liu, XZ., 2008. Characterization of a novel aerobic nicotine-biodegrading strain of Pseudomonas putida. Annals of Microbiology, Vol. 58, No. 1, pp. 41-45
Gong, XW., Yang, JK., Duan, YQ., Dong, JY., Zhe, W., Wang, L., Li, QH., Zhang, KQ., 2009. Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Research in Microbiology, Vol. 160, No. 3, pp. 200–204
Wang, SN., Liu, Z., Xu, P., 2009. Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33. Journal of Applied Microbiology, Vol. 107, No. 3, pp. 838-847
Zhong, W., Zhu, C., Shu, M., Sun, K., Zhao, L., Wang, C., Ye, Z., Chen, J., 2010. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology. Vol. 101, No. 18, pp. 6935–6941
Li, HJ., Duan, YQ., Ma, GH., Lei, LP., Zhang, KQ., Yang, JK., 2011. Isolation and characterization of Acinetobacter sp. ND12 capable of degrading nicotine. African Journal of Microbiology Research, Vol. 5, No. 11, pp. 1335–1341
Ventosa, A., Nieto, JJ., Oren, A., 1998. Biology of moderately halophilic aerobic bacteria. Microbiol.
Molecular Biology Reviews, Vol. 62, No. 2, pp. 504–544
Nieto, JJ., Fernandez-Castillo, R., Marquez, MC., Ventosa, A., Quesada, E., Ruiz-Berraquero, F., 1989. Survey of metal tolerance in moderately halophilic eubacteria. Applied Environmental Microbiology, Vol. 55, No. 9, pp. 2385–2390
Sambrook, J., Fritsch, EF., Maniatis, T., 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Springs Harbor Laboratory, Cold Spring Harbor, NY.
Al-Bayati, FA., 2008. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. Journal of Ethnopharmacology, Vol. 116, No. 3, pp. 403-406
Smibert, RM., Krieg, NR., 1994. Phenotypic characterization. In: Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R. (Eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp. 607–654
Leong, DU., Greisen, KS., 1993. PCR detection of bacteria found in cerebrospinal fluid. In: Persing DH, Smith TF, Tenover FC and White TJ. (eds.) Diagnostic Molecular Microbiology: Principles and Applications. Mayo Foundation, Rochester, pp. 300–309
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., Momenbeik, F., 2011. Use of growing cells of Pseudomonas aeruginosa for synthesis of the natural vanillin via conversion of isoeugenol. Iranian Journal of Pharmaceutical Research, Vol. 10, No. 4, pp. 749-757
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, Vol. 30, No. 12, pp. 2725-2729
Oren, A., 2010. Industrial and environmental applications of halophilic microorganisms. Environmental Technology, Vol. 31, No. 8, pp. 825-834