شبیهسازی جریان روزانه حوضه آبریز در شرایط کمبود داده
محورهای موضوعی : مدیریت محیط زیستمحمد رضا خزائی 1 * , باقر ذهبیون 2 , بهرام ثقفیان 3
1 - استادیار، گروه مهندسی عمران، دانشگاه پیام نور، ایران.
2 - استادیار، دانشکده عمران، دانشگاه علم و صنعت ایران
3 - استاد، دانشکده فنی مهندسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی
کلید واژه: مدل پیوسته, بارش-رواناب, جریان روزانه, ARNO, تبخیر و تعرق پتانسیل,
چکیده مقاله :
زمینه و هدف: شبیهسازی بارش- رواناب از محورهای اصلی هیدرولوژی علمی و مدیریت محیط زیست است. بنابراین محققان، پیوسته علاقهمند به یافتن روش های جدید برای این مسأله و اصلاح مدل ها یا روش های مدلسازی موجود هستند. روش بررسی: در این تحقیق، جریان روزانه رودخانه در خروجی یک حوضه آب ریز در جنوب غربی ایران، با استفاده از یک مدل بارش- رواناب پیوسته مفهومی شبیهسازی شد. در مواجهه با مشکل کفایت آمار حوضه، با استفاده از یک رهیافت ویژه نسبت به آمادهسازی متغیرهای مورد نیاز مدل از قبیل جریان رواناب، بارش و تبخیروتعرق پتانسیل حوضه اقدام شد. یافته ها: در مرحله واسنجی مدل ، شاخص بازده برای دادههای روزانه معادل80/0 و ضریب تعیین برابر 82/0 به دست آمد. در مرحله اعتبارسنجی نیز مقادیر شاخص بازده برابر 82/0 و ضریب تعیین برابر 83/0 به دست آمد. ضمن آن که آمارههای جریان مشاهداتی نیز با تقریب خوب در جریان شبیهسازی شده حفظ شد. بحث و نتیجه گیری: نتایج حاکی از موفقیت این رهیافت برای شبیهسازی جریان روزانه با به کارگیری این مدل در شرایط کمبود داده است.
Introduction: Rainfall-runoff modeling is one of the keystones of scientific hydrology andenvironmental management. Therefore the researchers continuously try to find new approaches forimprovement of existing models or modeling methodologies.Material and Methods: In this paper, daily stream flow at the outlet of a watershed in southwesternIran was simulated using a conceptual continuous rainfall-runoff model. In encountering with theproblem of poor quality data, required data such as runoff, rainfall and PET were prepared using aspecific approach.Results and Discussion: The results showed that the Nash-Sutcliffe efficiency was 0.80 and thecoefficient of determination was 0.82 during calibration and the Nash-Sutcliffe efficiency was 0.83and the coefficient of determination was 0.83 during validation. Furthermore statistics of observedstream flow were preserved in simulated stream flow. The results showed that this approach issuccessfully applicable for daily rainfall-runoff modeling when the quality of the input data is notadequate
- Boughton, W.C., (2005), Catchment water balance modelling in Australia 1960-2004. Agricultural Water Management, 71 (2), 91-116.
- Boughton, W., (2006), Calibrations of a daily rainfall-runoff model with poor quality data. Environmental Modelling and Software, 21, 1114-1128.
- Littlewood, I.G., Clarke, R.T., Collischonn, W., Croke, B.F.W., (2007), Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling & Software, 22, 1229-1239.
- Croke, B.F.W., Andrews, F., Jakeman, A.J., Cuddy, S.M., Luddy, A., (2006), IHACRES Classic Plus: a redesign of the IHACRES rainfall-runoff model. Environmental Modelling and Software, 21, 426-427.
- Lin, G.F., Wang, C. M., (2007), A nonlinear rainfall–runoff model embedded with an automated calibration method – Part 2: The automated calibration method., Journal of Hydrology, 341, 196– 206.
- Nathan, R.J., McMahon, T.A., (1990a), The SFB model part I- validation of fixed model parameters. Civil Engineering Transactions CE32 (3), 157-161 (Institution of Engineers, Australia).
- Nathan, R.J., McMahon, T.A., (1990b), The SFB model part II- operational considerations. Civil Engineering Transactions CE32 (3), 162e166 (Institution of Engineers, Australia).
- Boughton, W., Chiew, F., (2003), Calibrations of the AWBM for Use on Ungauged Catchments. Technical Report 03/15. CRC for Catchment Hydrology, Monash University, 37 pp.
- Todini, E., (1996), The ARNO rainfall-runoff model. Journal of Hydrol, 175: 339-382.
- Abdulla, F.A., Lettenmaier, D.P., Liang, Xu, (1999), Estimation of the ARNO model baseflow parameters using daily streamflow data. Journal of Hydrology, 222: 37–54.
- Carrera-Herna´ndez, J.J., Gaskin, S.J., (2007), Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. Journal of Hydrology, 336, 231– 249.
- خیرابی، ج.، (1381)، بررسی و مقایسه تطبیقی روش پنمن- مانتیس با روش فائو24 در ایران. انتشارات کمیته ملی آبیاری و زهکشی ایران.
- Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998), Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome.
- Blaney, H.F. and Criddle, W.D. (1950), Determining water requirements in irrigated areas from climatological and irrigation data, USDA Soil Conserv. Serv. SCS-TP96. 44 pp.
- Thornthwaite, C.W., (1948), An approach toward a rational classification of climate. Geograph. Rev., 38, 55-94.
- Hargreaves, G.H., Samani, Z.A., (1985), Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1 (2), 96–99.
- Serrano, S. E., (1997), Hydrology for Engineers, Geologists and Environmental professionals. Hydroscievce Inc., 101-103.
- Doorenbos, J. and Pruitt, W. O., (1977), Crop water requirements. Irrigation and Drainage Paper No. 24, (rev.) FAO, Rome, Italy. 144 p.
- Reynard, N.S., (2003), Impact of climate change on flood flows in river catchments. Interim report for Defra / EA, R&D Technical Report W5-032/TR, 49pp.
- Nash JE, Sutcliffe JV (1970), River flow forecasting through conceptual models. Part I. A discussion on principles. J Hydrol 10:282–290.
- Servat, E., and Dezetter, A., (1991), Selection of calibration objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area. Hydrol. Sci. J., 36(4/8), 307–330.
- Rao, A. R., and Han, J. (1987), Analysis of objective functions used in urban runoff models. Adv. Water Resour., 10, 205–211.
- Loukas, A., Vasiliades, L., Dalezios, N. R., (2002), Potential Climate change on flood Prodacing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. Journal of Hydrology, 259, 163-188.
- Zhang, G. P. and Savenije, H. H. G., (2005), Rainfall-runoff modelling in a catchment with a complex groundwater flow system: application of the Representative Elementary Watershed (REW) approach. Hydrology and Earth System Sciences, 9, 243–261.
- Kamali, M., Ponnambalam, K., and Soulis, E. D., (2007), Computationally efficient calibration of WATCLASS Hydrologic models using surrogate optimization. Hydrol. Earth Syst. Sci. Discuss., 4, 2307–2321.
- Evans, J and Schreider, S., (2002), Hydrological impacts of climate change on inflows to Perth, Australia. Climatic Change, 55, 361–393.
- Loukas, A., Vasiliades, L., Dalezios, N., R., (2004), Climate change implication on flood response of a mountainous watershed. Water, Air, and Soil Pollution: Focus 4, 331–347.
- Shafii, M., Smedt, F., D., (2009) “Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm,” Hydrol. Earth Syst. Sci. Discuss., 6, 243–271.