بررسی سینتیکی و ترمودینامیکی جذب سطحی نیکل(II ) توسط نانو کامپوزیت سیلیکا آﺋروژل- کربن اکتیو
محورهای موضوعی :
مدیریت محیط زیست
زهره سعادتی
1
*
,
محمود شوگردزاده
2
1 - استادیارگروه شیمی، دانشگاهآزاداسلامی، واحد امیدیه، امیدیه * (مسوول مکاتبات)
2 - دانش آموختهکارشناسیارشد شیمی، دانشگاه آزاد اسلامی، واحد امیدیه، امیدیه.
تاریخ دریافت : 1392/09/20
تاریخ پذیرش : 1394/12/19
تاریخ انتشار : 1398/01/01
کلید واژه:
نانو کامپوزیت سیلیکاآﺋروژل,
جذب سطحی,
نیکل,
ایزوترم جذب,
سینتیک جذب,
چکیده مقاله :
زمینه و هدف: وجود فلزات سنگین و سمی مثل نیکل در منابع آبی از مشکلات مهم محیط زیستی بسیاری از جوامع است. روش بررسی: در این پژوهش برای جذب سطحی نیکل (II ) از محلول آبی به وسیله نانو کامپوزیت سیلیکاآﺋروژل کربن اکتیو، شاخص های موثر بر فرآیند جذب مانند pH، مقدار جاذب، زمان تماس، دما و غلظت اولیه یون نیکل بررسی و بهینه شده است. یافته ها: نتایج بیان گر این است که درpH=5 بیش ترین جذب صورت می گیرد. درpHهای پایین مقادیرH+ با یون های فلزی برای جذب در جایگاه های جذب رقابت می کنند. داده های تجربی با مدل های سینتیکی شبه مرتبه اول و شبه مرتبه دوم بررسی شده و ثابت های سرعت ارزیابی شده اند. نتایج حاکی از آن است که فرآیند جذب از سینتیک شبه مرتبه دوم پیروی می نماید. هم چنین داده های تعادلی مربوط به ایزوترم های جذب، برتری مدل لانگمویر را نسبت به سایر مدل های ایزوترمی نشان داده است. نتیجه گیری: بر طبق نتایج ترمودینامیکی فرآیند جذب به صورت خودبه خودی، گرماگیر و برگشت ناپذیر است. نتایج این مطالعه نشان می دهد که نانو کامپوزیت سیلیکاآﺋروژل کربن اکتیو به طور موفقیت آمیزی می تواند برای حذف نیکل از محلول های آبکی استفاده شود.
چکیده انگلیسی:
Abstract Background and Objective: Presence of toxic heavy metals like nickel in water resources is a major environmental problem in many communities. Method: In this study, to stimulate the removal of Ni (II) from aqueous solution by silica aerogel-activated carbon nanocomposite, the parameters affecting the adsorption process such as pH, amount of adsorbent, contact time, temperature and concentration were investigated and optimized. Findings: The results showed the maximum adsorption at pH= 5. The lower pH, the more H+ ion competing with the metal ion for adsorption sites. Kinetic studies indicated that the adsorption process followed the pseudo-second order kinetics. Moreover, the equilibrium data related to adsorption isotherms showed a superiority of the Langmuir isotherm compared to other models. Discussion and Conclusion: Calculation of thermodynamic factors, such as ΔG◦, ΔH◦ and ΔS◦, indicated that the adsorption process is spontaneous, endothermic and irreversible. The results showed that silica aerogel-activated carbon nanocomposite has been successfully employed for the removal of Ni (II) from aqueous solutions.
منابع و مأخذ:
Reference
Meena A.K., Mishra G.K., Rai P.K., Rajagopal C., Nagar P.N., 2005. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Of Hazardous Materials, VolB(122), pp.161-170.
Duda-Chodak A., Blaszczyk U., 2008. The impact of nickel on human health, J. Elementol, Vol 13(4), pp. 685-696.
Nuhoglu, Y., Malkoc, E.,2009, Termodynamic and kinetic studies for enviromentaly friendly Ni (II) biosorption using waste pomace of olive oil factory, Bioresource Technology, Vol100, pp. 2375-2380.
Aslam M.M., Hassan I., Malik M., Matin A., 2004, Removal of copper from industrial effluent by adsorption with economical viable material, Electron, J. Environ. Agric. Food Chem, Vol3, pp. 658–664.
Sulaymon A. H , Balasim A. A., Al-Najar J. A., 2009, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers, Chemical Engineering Journal, Vol 155, pp. 647–653.
Paulson A. J., 1986, Effects of flow rate and pretreatment on the extraction of trace metals from estuarine and coastal seawater by Chelex-100, Anal. Chem, Vol 58, pp. 183-187.
Thostenson E. T., Li C., Chou T. W., 2005, Review: nanocomposites in context. Comput, Sci. Tech.Vol 65, pp.491–516
Werner M., Barbre I., Brand L., 2010, Focus Report, Aerogels.
Givianrade, M. H., Rabani, M., Saber-Tehrani, M., Aberoomand-Azar, P. 2013, Preparation and characterization of nanocomposite, silica aerogel, activated carbon and its adsorption properties for Cd (II) ions from aqueous solution, Journal of Saudi Chemical Society, Vol 17, pp.329–335
Tadayon, A., Jamshidi, R., Motahar, Sh., Tadayon, F., 2013, Concentration of Mercury Ions in Milk Samples by Nanoparticles of Modified Silica Aerogel, Scientific Journal of Veterinary Laboratory Research, Vol. 4(1), pp.83. (In Persian).
Tadayon, F., Motahar, Sh., Hosseini, M., 2012, Application of Taguchi method for optimizing the adsorption of lead ions on nanocomposite silica aerogel activated carbon,Academic Research International, Vol 2, pp.42-48.
Khanahmadzadehi, S., Khorshidi, N., Rabbani, M., Khezri, 2012, Removal of Phenol in Aqueous Solutions by Silica Aerogel-Activated Carbon Nanocomposite, J. Appl. Environ. Biol. Sci., Vol 2(7), pp. 281-286.
Sulak, M. T., Yatmaz, H. C., 2012, Removal of textile dyes from aqueous solutions with eco-friendly biosorbent, Desalination and Water Treatment, Vol 37, pp. 169-177.
Lalhruaitluangu, H., Prasad, M.N.V., Radha, K., 2011, Potential of chemically activated and raw charcoals of melocannabaccifera for removal of Ni (II) and Zn (II) from aqueous solutions, Desalination. Vol271, pp. 301-308.
Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., Shukla, S. S., 2002, The role of sawdust in the removal of unwanted materials from water, Journal of Hazardous materials, Vol 95, pp. 137-152.
Yu, L. J., Shukla, S. S., Dorris, K. L., Shukla, A., Margrave, J. L., 2003, Adsorption of chromium from aqueous solution by maple sawdust, Journal of Hazardous materials, Vol 2, pp. 53-63.
Ozacar, M., Sengil, I. A., 2005, Adsorption of metal complex dyes from aqueous solution by pine sawdust, Bioresource Technology, Vol 96, pp. 791-795.
Poots, V. J. P., Mckay, G., Healy, J. J., 1976, The removal of acid dye from effluent using natural adsorbents. I. Peat, Water Res, Vol 10, pp. 1067-1066.
Das, D. D., Mahaptra, R., Pradham, J., 2000, Removal of Cr(VI) from Aqueous Solution Using Activated Cow Dung Carbon, J. Colloid Interface sci, Vol 232, pp.235-240.
Guo, Y., Qi, J., Yang, S., 2003, Adsorption of Cr (VI) on micro and mesoporous rise husk based active carbon.Mater chemPhy, Vol 78, pp.132-137
Lagergren, S., 1898, Zurtheorie der sogenannten adsorption gel¨osterstoffe, K. Sven. Vetenskapsakad.Handl. Vol24, pp. 1–39.
Ho, Y.S and Mckay,G., 1999 Pseudo-second order model for sorption processes , Biochemistry, Vol 34, pp. 451-465.
Langmuir, I., 1918, Adsorption of gases on glass, mica and platinum, J. Am. Chem. Soc. Vol40 (9), pp. 1361–1404.
Freundlich, H., Heller, W., 1939, The adsorption of CIS-and trans-azobenzene, J Am. Chem. Soc. Vol61 (8), pp. 2228-2230.
Lyubchik S. I., Lyubchik A. I., Olga L. Galushko O. L., Tikhonova L. P., Vital J., Isabel M. Fonseca, Svetlana B. Lyubchik., 2004. Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol 242, pp. 151–15.
Bari F., Begum N., Jamaludin S. B., Hussin K., 2009, Extraction and separation of Cu(II), Ni(II) and Zn(II) by sol–gel silica immobilized with Cyanex 272, Hydrometallurgy. Vol96, pp. 140–147.
_||_
Reference
Meena A.K., Mishra G.K., Rai P.K., Rajagopal C., Nagar P.N., 2005. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Of Hazardous Materials, VolB(122), pp.161-170.
Duda-Chodak A., Blaszczyk U., 2008. The impact of nickel on human health, J. Elementol, Vol 13(4), pp. 685-696.
Nuhoglu, Y., Malkoc, E.,2009, Termodynamic and kinetic studies for enviromentaly friendly Ni (II) biosorption using waste pomace of olive oil factory, Bioresource Technology, Vol100, pp. 2375-2380.
Aslam M.M., Hassan I., Malik M., Matin A., 2004, Removal of copper from industrial effluent by adsorption with economical viable material, Electron, J. Environ. Agric. Food Chem, Vol3, pp. 658–664.
Sulaymon A. H , Balasim A. A., Al-Najar J. A., 2009, Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers, Chemical Engineering Journal, Vol 155, pp. 647–653.
Paulson A. J., 1986, Effects of flow rate and pretreatment on the extraction of trace metals from estuarine and coastal seawater by Chelex-100, Anal. Chem, Vol 58, pp. 183-187.
Thostenson E. T., Li C., Chou T. W., 2005, Review: nanocomposites in context. Comput, Sci. Tech.Vol 65, pp.491–516
Werner M., Barbre I., Brand L., 2010, Focus Report, Aerogels.
Givianrade, M. H., Rabani, M., Saber-Tehrani, M., Aberoomand-Azar, P. 2013, Preparation and characterization of nanocomposite, silica aerogel, activated carbon and its adsorption properties for Cd (II) ions from aqueous solution, Journal of Saudi Chemical Society, Vol 17, pp.329–335
Tadayon, A., Jamshidi, R., Motahar, Sh., Tadayon, F., 2013, Concentration of Mercury Ions in Milk Samples by Nanoparticles of Modified Silica Aerogel, Scientific Journal of Veterinary Laboratory Research, Vol. 4(1), pp.83. (In Persian).
Tadayon, F., Motahar, Sh., Hosseini, M., 2012, Application of Taguchi method for optimizing the adsorption of lead ions on nanocomposite silica aerogel activated carbon,Academic Research International, Vol 2, pp.42-48.
Khanahmadzadehi, S., Khorshidi, N., Rabbani, M., Khezri, 2012, Removal of Phenol in Aqueous Solutions by Silica Aerogel-Activated Carbon Nanocomposite, J. Appl. Environ. Biol. Sci., Vol 2(7), pp. 281-286.
Sulak, M. T., Yatmaz, H. C., 2012, Removal of textile dyes from aqueous solutions with eco-friendly biosorbent, Desalination and Water Treatment, Vol 37, pp. 169-177.
Lalhruaitluangu, H., Prasad, M.N.V., Radha, K., 2011, Potential of chemically activated and raw charcoals of melocannabaccifera for removal of Ni (II) and Zn (II) from aqueous solutions, Desalination. Vol271, pp. 301-308.
Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., Shukla, S. S., 2002, The role of sawdust in the removal of unwanted materials from water, Journal of Hazardous materials, Vol 95, pp. 137-152.
Yu, L. J., Shukla, S. S., Dorris, K. L., Shukla, A., Margrave, J. L., 2003, Adsorption of chromium from aqueous solution by maple sawdust, Journal of Hazardous materials, Vol 2, pp. 53-63.
Ozacar, M., Sengil, I. A., 2005, Adsorption of metal complex dyes from aqueous solution by pine sawdust, Bioresource Technology, Vol 96, pp. 791-795.
Poots, V. J. P., Mckay, G., Healy, J. J., 1976, The removal of acid dye from effluent using natural adsorbents. I. Peat, Water Res, Vol 10, pp. 1067-1066.
Das, D. D., Mahaptra, R., Pradham, J., 2000, Removal of Cr(VI) from Aqueous Solution Using Activated Cow Dung Carbon, J. Colloid Interface sci, Vol 232, pp.235-240.
Guo, Y., Qi, J., Yang, S., 2003, Adsorption of Cr (VI) on micro and mesoporous rise husk based active carbon.Mater chemPhy, Vol 78, pp.132-137
Lagergren, S., 1898, Zurtheorie der sogenannten adsorption gel¨osterstoffe, K. Sven. Vetenskapsakad.Handl. Vol24, pp. 1–39.
Ho, Y.S and Mckay,G., 1999 Pseudo-second order model for sorption processes , Biochemistry, Vol 34, pp. 451-465.
Langmuir, I., 1918, Adsorption of gases on glass, mica and platinum, J. Am. Chem. Soc. Vol40 (9), pp. 1361–1404.
Freundlich, H., Heller, W., 1939, The adsorption of CIS-and trans-azobenzene, J Am. Chem. Soc. Vol61 (8), pp. 2228-2230.
Lyubchik S. I., Lyubchik A. I., Olga L. Galushko O. L., Tikhonova L. P., Vital J., Isabel M. Fonseca, Svetlana B. Lyubchik., 2004. Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol 242, pp. 151–15.
Bari F., Begum N., Jamaludin S. B., Hussin K., 2009, Extraction and separation of Cu(II), Ni(II) and Zn(II) by sol–gel silica immobilized with Cyanex 272, Hydrometallurgy. Vol96, pp. 140–147.