بررسی پویایی زمانی و مکانی پوشش اراضی تالاب پريشان با استفاده از مدل درخت تصمیم و پردازش تصاوير ماهواره¬اي
محورهای موضوعی : مدیریت محیط زیستگل آفرین زارع 1 , بهرام ملک محمدی 2 , حمیدرضا جعفری 3 , احمدرضا یاوری 4 , احمد نوحه گر 5
1 - دانشجوی دکتری برنامهریزی محیطزیست ، دانشکده محیطزیست دانشگاه تهران.
2 - دانشیار دانشکده محیطزیست دانشگاه تهران. *(مسوول مکاتبات)
3 - استاد دانشکده محیطزیست دانشگاه تهران.
4 - استاد دانشکده محیطزیست دانشگاه تهران.
5 - استاد دانشکده محیطزیست دانشگاه تهران.
کلید واژه: تصاویر ماهواره¬ای, پوشش اراضی, روش درخت تصمیم, تالاب پریشان.,
چکیده مقاله :
زمینه و هدف: تالابها به عنوان یکی از مهمترین انواع اکوسیستمهای جهان به شدت در حال تهدید میباشند. تالاب پریشان علاوه بر اینکه جزء مناطق حفاظتشده ایران قرار دارد بلکه به عنوان تالاب بینالمللی و نیز ذخیرهگاه زیستکره نیز شناخته شده است. درک روند تغییرات این تالاب میتواند برای بهبود وضعیت آتی آن بسیار مفید باشد. از این رو هدف پژوهش حاضر پايش تغييرات پهنه آبی تالاب پريشان در بازه زمانی 30 ساله میباشد. روش بررسی: در راستای هدف تحقیق تصاوير ماهواره¬ لندست براي چهار دوره زماني 13۶۶، 1377، 13۸۶ و ۱۳۹۵ به همراه سایر دادههای مورد نیاز تهیه گرديد. با انجام پردازشهای مورد نیاز در نرم¬افزار ENVI 4.7، نقشه¬هاي پوشش اراضي تالاب پریشان با بهرهگیری از شاخص تفاضلي نرمال شده پوشش گياهي و شاخص تفاضلي نرمال شده آب در قالب روش درخت تصمیم در سه طبقه پهنه آبی، پوشش گیاهی و سایر اراضی استخراج شد. یافتهها: نتایج نشان داد که در بازه بلندمدت سیساله (۱۹۸۷ تا ۲۰۱۶) از مساحت ۱۹۶۳ هکتاری پهنه آبی تالاب پریشان تنها ۱۳ هکتار در انتهای بازه باقیمانده است. پایش تغییرات نشان میدهد که پهنه آبی تالاب پریشان نسبت به سال 1366 حدود 1950، نسب به سال 1377 حدود 3605 و نسب به سال 1386 حدود 2272 هکتار کاهش مساحت داشته است. بحث و نتیجهگیری: استفاده از دادههای ماهوارهای و تکنیکهای سنجش از راه دور به همراه مدل طبقهبندی درخت تصمیم حاکی از قابلیت روش مورد استفاده برای شناسایی و طبقهبندی پوشش اراضی در محدودههای تالابی که پوشش گیاهی و آب درهم تنیدهاند، میباشد.
Background and Objective: Wetlands, as one of the most important types of ecosystems in the world, are extremely threatened. In addition to being part of Iran's protected areas, the Parishan wetland is also known as an international wetland and biosphere reserve. Understanding the process of changing in this wetland, can be very helpful in improving its future status. Therefore, the purpose of the present study is to monitor the changes in the over a 30-year period. Material and Methodology: For the purpose of the research, Landsat satellite images were prepared for four time periods of 1987, 1998, 2007 and 2016 along with other required data. By performing the required preprocessing in ENVI 4.7 software, Parishan wetland land-cover maps was extracted using Normalized Difference Vegetation Index and Normalized Difference Water Index combining with Decision Tree method in three class including water-body, vegetation and others land-cover. Findings: The results showed that after 30 years only 13 hectares of 1963 hectares of Parishan wetland water-body remained. Monitoring of changes shows that Parishan wetland water-body has decreased by 1950 hectare in comparison to 1987, 3605 hectare in comparison to 1998 and 2272 hectare in comparison to 2007. Discussion and Conclusion: using satellite data and remote sensing techniques along with Decision Tree classification model indicate the capability of this method for identifying and classifying land-cover in wetland areas where vegetation and water are intertwined.
1. Sanjerehei, M. M., & Rundel, P. W. (2017). The future of Iranian wetlands under climate hange. Wetlands ecology and management, 25(3), 257-273.
2. Russi, D., ten Brink, P., Farmer, A., Badura, T., Coates, D., Förster, J., ... & Davidson, N. (2013). The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels, 78.
3. Madjnoonian, H. (1999). Wetland conservation. Department of the Environment (DOE), Iran, 1-170. (In Persian)
4. Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of the Total Environment, 586, 319-327.
5. Finlayson, C.M. (2012). Forty years of wetland conservation and wise use. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 139–143.
6. Davidson, N.C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 936–941
7. Castle, S., Rejmánková, E., Foley, J., & Parmenter, S. (2019). Hydrologic alterations impact plant litter decay rate and ecosystem resilience in Mojave wetlands. Restoration Ecology, 27(5), 1094-1104.
8. Asadolahi, Z., Danehkar, A., & Asadolahi, Z. (2012). Protective Zoning of Choghakhor Wetland by Spatial Multi Criteria Evaluation (SMCE). Journal of Wetland Ecobiology, 4(13), 35-47. (In Persian)
9. Behrouzi Rad, B. (2006). Wetlands Issues in Iran and their ecosystem management indices. 3rd Iranian Congress on Environment Crises and their Rehabilitation, Ahvaz-IRAN. (In Persian)
10. Department of Environment. (2010). Lake Parishan integrated management plan. Fars Department of Environmental Protection. (In Persian)
11. Lotfi, A. (2011). Lake Parishan A Concise Baseline Report. Conversion of Iranian Wetlands Project UNDP/GEF, Fars Environment Provincial Office. (In Persian)
12. Malekmohammadi, B., & Jahanishakib, F. (2017). Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecological Indicators, 82, 293-303.
13. Zebardast, L., & Jafari, H. (2011). Use of Remote Sensing in Monitoring the Trend of Changes of Anzali Wetland in Iran and Proposing Environmental Management Solution. Journal of Environmental Studies, 37(57), 1-8. (In Persian)
14. Rahimi Blouchi, L., Zarkar, A., & Malekmohammadi, B. (2012). Detecting Environmental Change of Shadegan International Wetland Using Remote Sensing and Wrastic Index (Case Study: Shadegan International Wetland). Journal of RS and GIS for Natural Resources, 3(4), 43-55. (In Persian)
15. Soffianian, A. (2009). A Study on Land Use Change in Isfahan Using Remote Sensing Technique. Journal of Water and Soil Science, 13 (49), 153-164. (In Persian)
16. Hui, Y., Rongqun, Z., & Xianwen, L. (2009). Classification of wetland from TM imageries based on decision tree. WSEAS Transactions on Information Science and Applications, 6(7), 1155-1164.
17. Sima, S., & Tajrishy, M. (2013). Using satellite data to extract volume–area–elevation relationships for Urmia Lake, Iran. Journal of Great Lakes Research, 39(1), 90-99.
18. Rafii, Y., Alavipanah, S., Malekmohammadi, B., Ramazani Mehrian, M., Nasiri, H. (2012). Producing land cover maps using remote sensing and decision tree algorithm (Case study: Bakhtegan national park and wildlife refuge). Geography and Environmental Planning, 23(3), 93-110. (In Persian)
19. Sadeghinia, M., & Nazari Birjani, Gh. (2014). Preparation of land use map of Shadegan wetland using satellite imagery, First National Congress of Biology and Natural Sciences of Iran, Tehran Iran. (In Persian)
20. Jafarbigloo, M., Veysi, A., Nuraeesefat, I., & Naderi, S. (2015). Study of Drought Impact Assessment on Hashiland Wetland. Journal of Wetland Ecobiology, 7(25), 81-92. (In Persian)
21. Baker, C., Lawrence, R., Montagne, C., & Patten, D. (2006). Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2), 465.
22. Zou, W., Zhang, H., Ju, H., & Liu, H. (2011). Study on highland wetlands remote sensing classification based on decision tree algorithm. Forest Research, Beijing, 24(4), 464-469.
23. Cordeiro, C. L. D. O., & Rossetti, D. D. F. (2015). Mapping vegetation in a late Quaternary landform of the Amazonian wetlands using object-based image analysis and decision tree classification. International Journal of Remote Sensing, 36(13), 3397-3422.
24. Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R., & Khovanova, N. (2019). Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomedical Signal Processing and Control, 52, 456-462.
25. Soltani, M., & Karami, J. (2015). Building detection from world view images using decision tree algorithm. Geography and Environmental Planning, 26(1), 117-128. (In Persian)
26. Beucher, A., Møller, A. B., & Greve, M. H. (2019). Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma, 352, 351-359.
27. Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27-S31.
28. Alimohammadi, A., Matkan, A., Ziaeean, P., & Tabatabaii, H. (2009). Comparison of Methods Based Pixel Classification, Object-Based and Decision Tree in Forest Type Mapping Using Remote Sensing Data (Case Study: Forest Astara). Journal of Geographical Sciences, 10(713), 7-26. (In Persian)
29. Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the total environment, 644, 1006-1018.
30. Zhang, K., Wu, X., Niu, R., Yang, K., & Zhao, L. (2017). The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environmental Earth Sciences, 76(11), 405.
31. Rounds, E. M. (1980). A combined nonparametric approach to feature selection and binary decision tree design. Pattern Recognition, 12(5), 313-317.
32. Gascon, M., Cirach, M., Martínez, D., Dadvand, P., Valentín, A., Plasència, A., & Nieuwenhuijsen, M. J. (2016). Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban Forestry & Urban Greening, 19, 88-94.
33. Alavi panah, S., Rezaei, A., Azadi ghatar, S., jeddi azgandi, H. (2016). Investigation on Impervious Surface (ISA) and the Normalized Difference Vegetation Index (NDVI) as Representative Parameters of the Urban Heat Island by Using Satellite Imageries. Geography and Planning, 20(55), 183-207. (In Persian)
34. Gupta, R. P. (2017). Remote sensing geology. Springer.
35. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
36. Ashtekar, A. S., Mohammed-Aslam, M. A., & Moosvi, A. R. (2019). Utility of Normalized Difference Water Index and GIS for Mapping Surface Water Dynamics in Sub-Upper Krishna Basin. Journal of the Indian Society of Remote Sensing, 47(8), 1431-1442.
37. Ordoo, S., & Owfi, F. (2012). Environmental Analysis of the International Wetland of Parishan on the Basis of the SWOT Management Model. Journal of Animal Biology, 5(1), 1-9. (In Persian)
38. Khajeh, M., Bazrafshan, O., Vagharfard, H., & Esmaeelpoor, Y. (2015). An Investigation on the Quantity and Quality of Groundwater in the Parishan Plain. MJSP, 18 (4), 71-96. (In Persian)
39. Zamin Ara-e Fars Consulting Engineers. (2010). Investigating the Impacts of Discharging Wells Around Parishan Wetland. Conversion of Iranian Wetlands Project UNDP/GEF, Fars Environment Provincial Office. (In Persian)
40. Shafiei, M., Raeini Sarjaz, M., Ramin, F., & Gholami-sefidkuhi, M. (2012).The Role of Human Factors in Lowering the Level of Water in the Parishan Wetland. International Journal of Environmental Science and Bioengineering, 00(53 - 54), 41-44. (In Persian)
41. Abbasspour, M., Abedi, Z., Ahmadian, M., & Zafari, F. (2013). Economic Valuation of Market Oriented Outputs for Environmental Sources in Arjan-Parishan Lake (With in Emphasis Aquatic Species). Journal of Environmental Science and Technology, 15(1), 79-93. (In Persian)
42. Dehghani, A. (2005). Ecosystem of Parishan lagoon. Naghsh-e- Mehr press (In Persian).
43. Fars Department of Environmental Protection. (2009). Report on Finding Lake Parishan Pollution Resources. , Fars Environment Provincial Office. (In Persian)
44. Shafiei, M., Raeini, S. M., & Ramin, F. (2014). Drought Monitoring of Arjan-Parishan Plain (Study Area of Parishan Lake of Fars Province). Journal of Watershed Management Research, 5 (9), 46-63 (In Persian).
45. Sharifi, J., Nakhhaei, M., Ghasemlou, Ayolar., &Khodadad, Mehdi. (2015). Environmental Impact Assessment of Iranian Wetlands with Emphasis on Parishan Wetland; Second International Conference on Environmental Engineering, Tehran, Iran. (In Persian)
46. Jahanbakhsh Ganjeh, M., Khorasani, N., Morshedi, J., Danehkar, A., & Naderi, M. (2017). An investigation on spatial changes of parishan international wetland using remote sensing methods. Applied Ecology and Environmental Research, 15(3), 549-562.