تغییرات گروههای عملکردی گیاهان در اثر آتشسوزی در مراتع نیمه استپی استان چهارمحال و بختیاری
محورهای موضوعی : منابع طبیعیالهام بنی هاشمی 1 * , علی اصغر نقی پوربرج 2
1 - دانشجوی دکتری علوم و مهندسی مرتع دانشکده منابع طبیعی و علوم زمین دانشگاه شهرکرد، ایران. *(مسوول مکاتبات)
2 - استادیار گروه مهندسی طبیعت دانشکده منابع طبیعی و علوم زمین دانشگاه شهرکرد، ایران.
کلید واژه: صفات عملکردی گیاهی, مرتع نیمه استپی, کرسنک, آتشسوزی,
چکیده مقاله :
زمینه و هدف: درک چگونگی پاسخ گیاهان به آتشسوزی برای پیشبینی ویژگیها و پراکنش بسیاری از زیست بومها ضروری است. هدف این تحقیق شناسایی، طبقهبندی و تجزیه و تحلیل صفات عملکردی گیاهان است که بتوانند به عنوان وسیلهای برای شناسایی تغییرات جوامع گیاهی در اثر آتشسوزی در فواصل زمانی مختلف مورد استفاده قرار گیرند. روش بررسی: مطالعه حاضر در منطقه کرسنک در شهرستان بن و در استان چهارمحال و بختیاری انجام یافته است. تعداد 6 سایت با سابقه آتشسوزی یکساله و پنج ساله انتخاب و نمونهبرداری به روش تصادفی طبقه بندی شده انجام یافت. در هر پلات پس از شناسایی گونههای موجود، درصد پوشش هریک از گونهها تخمین زده شد و صفات گیاهی اندازهگیری شدند. یافته ها: نتایج نشان داد که صفات گیاهی همچون ارتفاع گیاه، تولید، شاخص سطح برگ SLA، مساحت و وزن خشک برگ، درصد ترکیب گونههای گندمی، علفی و بوتهای، درصد ترکیب گیاهان با خوشخوراکی کلاس II و III، درصد ترکیب گونههای با اشکال زیستی همیکریپتوفیت و کامفیت در دو منطقه آتشسوزی و شاهد اختلاف معنیداری داشتند (05/0Sig ≤). طبق نتایج تحلیل مولفه های اصلی، تأثیرپذیرترین صفات به ترتیب عبارت از شاخص سطح برگ SLA، خوشخوراکی کلاس II، طول برگ، درصد ترکیب همیکریپتوفیت، درصد ترکیب پهنبرگان علفی و مساحت برگ بودند که ارتباط مستقیمی با آتشسوزی پنجساله و آتشسوزی یکساله داشتند. بحث و نتیجه گیری: بنابراین میتوان نتیجهگیری نمود که صفات گیاهی نقش مهمی در تعیین پاسخ گونههای گیاهی به آشفتگیهای محیطی دارند و از این رو میتوانند بر سیر توالی ثانویه مرتع نیمه استپی پس از آتشسوزی تأثیرگذار باشند.
Background and Objective: Understanding of how plants respond to a fire is essential to predict the characteristics and distribution of many ecosystems. This research is aimed at identifying, classifying and analyzing plant functional traits that can be used as a means for determining changes in plant communities through the fire at various time intervals. Method: The present study was conducted in the Karsanak region in Chaharmahal Va Bakhtiari province. Six sites with one and five years after the last fire were selected. A stratified random sampling was used. In each plot, after identifying the existing species, the percentage of the cover of each species was estimated and the plant characteristics were measured. Findings: The results showed that vegetative traits such as plant height, production, SLA leaf area index, leaf area and leaf dry weight, composition of Gramineae species, herbaceous plants and shrub, the percentage of plants with class of II and III palatability, percentage of species composition with form of Hemicryptophyte and chamaephyte had a significant difference in fire and control areas. According to Principal Component Analysis, the most effective of trait were SLA leaf area index, palatability of class II, the leaf length, Hemicryptophytes, forbs and long of the leaf which had a direct relationship with five-year fire and one year fire. Discussion and Conclusion: Therefore, it can be concluded that plant traits play an important role in determining the response of plant species to environmental disturbances and hence can influence the process of the post-fire rangeland secondary sequence.
- Smith, T. M., Shugart, H. H., Woodward, F. I., (eds.) 1997. Plant functional types – their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, UK.
- Lavorel, S., Cramer, W., (eds.) 1999. Special feature: plant functional types and disturbance. Journal of Vegetation Science, 10(5):603–730.
- Cary, G. J., Morrison, D. A., 1995. Effects of fire frequency on plant species composition of sandstone communities in the Sydney region – combinations of inter-fire intervals. Australian Journal of Ecology, 20(3): 418–426.
- Iwasa, Y., Kubo, T., 1997. Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11(1): 41–65.
- Gill, A. M., Allan, G., 2008. Large fires, fire effects and the fire-regime concept. International Journal of Wildland Fire, 17(6): 688–695.
- Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5): 545-556.
- Kelly, C. K., Bowler, M. G., 2002. Coexistence and relative abundance in forest trees species. Science, 417: 437-440.
- Kahmen, S., Poschlod, S., 2008. Effects of grassland management on plant functional trait composition. Agriculture, Ecosystems and Environment, 128(3): 137–145.
- Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J., Rodrigo, A., 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90(5): 1420-1420.
- Bond, W. J., Wilgen, B. W., 1996. Fire and Plants. Springer Netherlands, Dordrecht. (Chapman & Hall: London), 263.
- Spasojevic, M. J., Aicher, R. J., Koch, G. R., Marquardt, E. S., Mirotchnick, N., Troxler, T. G., Collins, S. L., 2010. Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits. Ecology: 91(6), 1651-1659.
- Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., Bradstock, R. A., 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science: 16(8), 406-411.
- Guevara, J. C., Stasi, C. R., Wuilloud, C. F., Estevez, O. R., 1999. Effects of fire on rangeland vegetation in south-western Mendoza plains Argentina: composition, frequency, biomass, productivity and carrying capacity. J. of Arid Environments, 41(1): 27-35
- Cianciaruso, M. V., Silva, I. A., Batalha, M. A., Gaston, K. J., Petchey, O. L., 2012. The influence of fire on phylogenetic and functional structure of woody savannas: Moving from species to individuals. Perspect. Plant Ecol. 14(3): 205-216.
- Martins, F. d. S. R. V., Xaud, H. A. M., dos Santos, J. R., Galvão, L. S., 2012. Effects of fire on above-ground forest biomass in the northern Brazilian Amazon. Journal of Tropical Ecology, 28(6): 591-601.
- Burnett, S. A., Hattey, J. A., Johnson, J. E., Swann, A. L., Moore, D. I., Collins, S. L., 2012. Effects of fire on belowground biomass in Chihuahuan desert grassland. Ecosphere, 3(11): 1-13.
- McPherson, G. R., 1995. The role of fire in desert grasslands. Pages 130–151 in: M.P. McClaran and T.R. van Devender, editors. The desert grassland. University of Arizona Press, Tucson, USA.
- Morgan, J. W., Lunt, I. D., 1999. Effects of time-since-fire on the tussock dynamics of a dominant grass in a temperate Australian grassland. J. of Biological Conservation, 88(3): 379-386.
- Provencher, L., Forbis, T. A., Frid, L., Medlyn, G., 2007. Comparing alternative management strategies of fire, grazing and weed control using spatial modeling. Journal of Ecological Modeling, 209(2): 249-263.
- Carleton, S. W., Loftin, S. R., 2000. Response of 2 semiarid grasslands to cool-season prescribed fire. J. Range Manage., 53:52-61.
- Haubensak, K., Antonio, C. D., Wixon, D., 2009. Effect of fire and environmental variables and composition in grazed salt desert shrub lands of the Great Basin (USA). Journal of Arid Environments, 73(6): 643-650.
- Garcia, N., 1977. The effects of fire on the vegetation of Donana national park. Journal of Spain. Tech. Rep, 3(1): 318-325.
- Vivan, L. M., Cary, G. J., 2011. Relationship between leaf traits and fire response strategies in shrub species of a mountainous region of southeastern Australia. Annals of Botany, available online at www.aob.oxfordjournals.org, 1-12.
- Shariatmadari, H., 2011. Effect of fire on Plant functional type in two arid and semi-arid rangeland (Bazangan and Jowzak). M.Sc. thesis, Ferdowsi University, Mashhad, Iran, 130p. (In Persian).
- Apaza‐Quevedo, A., Lippok, D., Hensen, I., Schleuning, M., Both, S., 2015. Elevation, Topography, and Edge Effects Drive Functional Composition of Woody Plant Species in Tropical Montane Forests. Biotropica 47(4): 449-458.
- Reich, P. B., Peterson, D. W., Wedin, D. A., Wrage, K., 2001. Fire and Vegetation Effects on Productivity and Nitrogen Cycling Across a Forest–Grassland Continuum. Ecology, 82(6): 1703-1719.
- Dale, G., Brockway, A., Gatewood, R. G., Paris, R. B., 2002. Restoring fire as an ecological process in short grass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. J. Environmental Management, 65(2):135-152.
- Snyman, H. A., 2004. Estimating the short-term impact of fire on rangeland productivity in a semi-arid climate of South Africa. Journal of arid environments, 59: 685-697.
- Jones, B., Stanley, F. F., Leslie, D. M., Engle, D. M., Lochmiller, R. L., 2000. Herpetofaunal responses to brush management with herbicide and fire. Journal of Range Management, 53: 154-158.
- Kristofer, R. B., 2006. Soil physiochemical changes following 12 years of annual burning in humid-subtropical tall grass prairie: a hypothesis. Acta Ecologica, 30: 407-413.
- Omidzadeh Ardali, E., Zare Chahouki, A. M., Arzani, H., Ebrahimi, A. Tahmasebi, P., 2016. Comparison of Performance of three the multi-scale plots for evaluation of plant diversity in Karsanak Rangeland of Shahrekord. Plant Research, 30(1): 1-15. (In Persian)
- Arzani, H., Abedi, M., 2015. Rangeland assessment: Vegetation measurement. University of Tehran press, 304pp. (In Persian)
- Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., Van der Heijden, M. G. A., Pausas, J. G., Poorter, H., 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335-380.
- Shryock, D. F., DeFalco, L. A., Esque, T. C., 2014. Life‐history traits predict perennial species response to fire in a desert ecosystem. Ecology and evolution, 4(15): 3046-3059.
- Ortman, J., Beran, D. D., 2008. Grassland management with prescribed Fire. Nebraska cooperative extension. EC, 148: 122-132.
- Rafiee, F., Jankju, M., Ejtehadi, H., 2015. Investigation on tolerant, adapted and sensitive plant traits to chronological wildfires. Iranian Journal of Range and Desert Research, 22(1): 73-85. (In Persian)
- Mirzaei Mossivand, A., Keivan Behjou, F., Zandi Esfahan, E., Ghorbani, A., 2015. Assessment of Fire Effects on Surface Cover Changes and Forage Production (Case Study: Delfan County, Lorestan Province, Iran). Journal of Rangeland Science, 5(1): 60-71. (In Persian)
- Shokri, M., Safaian, N., Atrakchali, A., 2002. Investigation of the effects of fire on vegetation ariations in Takhti Yeylagh-Golestan national park. Iranian J. of Natural Recourse, 55(2): 273. (In Persian)
- Rafiee, F., Jankju, M., Ejtehadi, H., 2015. Plant functional groups (PFTs) semi-arid rangelands marker to detect the secondary succession after fire. Iranian Journal of Applied Ecology, 38(8): 17-27. (In Persian)
- Bock, J. H., Bock, C. E., 1992. Vegetation response to wildfire on native versus exotic Arizon grassland. Journal of Vegetation Science, 3:439-446.
- Jankju, M., 2009. Range improvement and development. Academic Center for Education, Culture and Research, Mashhad, Iran, 225p. (In Persian)
- Valizadeh, M., Moghadam, M., 1997. Experimental design in agriculture. Parivar Pub., 395 p. (In Persian).
- Fatahi, B., Tahmasebi, A., 2010. The Effect of Fire on Vegetation Change in Mountain Zagros Mountain Rangelands (Case Study: Asadabad Neck Rocks, Hamedan Province 4 (2): 239-228. (In Persian)
- Grootemaat, S., Wright, I. J., Bodegom, P. M., Cornelissen, J. H., Cornwell, W. K., 2015. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology DOI: 10.1111/1365-2435.12449.
- Ripley, B., Visser, V., Christin, P. A., Archibald, S., Martin, T., Osborne, C., 2015. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type. Ecology, 96(10): 2679-2691.
- Dwyer, L., Stewart, D., Hamilton, R., Houwing, L., 1992. Ear position and vertical distribution of leaf area in corn. Agronomy Journal, 84: 430-438.
- Tahmasebi, P., 2013. Investigating the destructive effects and potential of fire use as a means of managing the vegetation of semi-steppe pastures. Range and Watershed Management, 66 (2): 287-298. (In Persian)
_||_
- Smith, T. M., Shugart, H. H., Woodward, F. I., (eds.) 1997. Plant functional types – their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, UK.
- Lavorel, S., Cramer, W., (eds.) 1999. Special feature: plant functional types and disturbance. Journal of Vegetation Science, 10(5):603–730.
- Cary, G. J., Morrison, D. A., 1995. Effects of fire frequency on plant species composition of sandstone communities in the Sydney region – combinations of inter-fire intervals. Australian Journal of Ecology, 20(3): 418–426.
- Iwasa, Y., Kubo, T., 1997. Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11(1): 41–65.
- Gill, A. M., Allan, G., 2008. Large fires, fire effects and the fire-regime concept. International Journal of Wildland Fire, 17(6): 688–695.
- Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5): 545-556.
- Kelly, C. K., Bowler, M. G., 2002. Coexistence and relative abundance in forest trees species. Science, 417: 437-440.
- Kahmen, S., Poschlod, S., 2008. Effects of grassland management on plant functional trait composition. Agriculture, Ecosystems and Environment, 128(3): 137–145.
- Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J., Rodrigo, A., 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology, 90(5): 1420-1420.
- Bond, W. J., Wilgen, B. W., 1996. Fire and Plants. Springer Netherlands, Dordrecht. (Chapman & Hall: London), 263.
- Spasojevic, M. J., Aicher, R. J., Koch, G. R., Marquardt, E. S., Mirotchnick, N., Troxler, T. G., Collins, S. L., 2010. Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits. Ecology: 91(6), 1651-1659.
- Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., Bradstock, R. A., 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science: 16(8), 406-411.
- Guevara, J. C., Stasi, C. R., Wuilloud, C. F., Estevez, O. R., 1999. Effects of fire on rangeland vegetation in south-western Mendoza plains Argentina: composition, frequency, biomass, productivity and carrying capacity. J. of Arid Environments, 41(1): 27-35
- Cianciaruso, M. V., Silva, I. A., Batalha, M. A., Gaston, K. J., Petchey, O. L., 2012. The influence of fire on phylogenetic and functional structure of woody savannas: Moving from species to individuals. Perspect. Plant Ecol. 14(3): 205-216.
- Martins, F. d. S. R. V., Xaud, H. A. M., dos Santos, J. R., Galvão, L. S., 2012. Effects of fire on above-ground forest biomass in the northern Brazilian Amazon. Journal of Tropical Ecology, 28(6): 591-601.
- Burnett, S. A., Hattey, J. A., Johnson, J. E., Swann, A. L., Moore, D. I., Collins, S. L., 2012. Effects of fire on belowground biomass in Chihuahuan desert grassland. Ecosphere, 3(11): 1-13.
- McPherson, G. R., 1995. The role of fire in desert grasslands. Pages 130–151 in: M.P. McClaran and T.R. van Devender, editors. The desert grassland. University of Arizona Press, Tucson, USA.
- Morgan, J. W., Lunt, I. D., 1999. Effects of time-since-fire on the tussock dynamics of a dominant grass in a temperate Australian grassland. J. of Biological Conservation, 88(3): 379-386.
- Provencher, L., Forbis, T. A., Frid, L., Medlyn, G., 2007. Comparing alternative management strategies of fire, grazing and weed control using spatial modeling. Journal of Ecological Modeling, 209(2): 249-263.
- Carleton, S. W., Loftin, S. R., 2000. Response of 2 semiarid grasslands to cool-season prescribed fire. J. Range Manage., 53:52-61.
- Haubensak, K., Antonio, C. D., Wixon, D., 2009. Effect of fire and environmental variables and composition in grazed salt desert shrub lands of the Great Basin (USA). Journal of Arid Environments, 73(6): 643-650.
- Garcia, N., 1977. The effects of fire on the vegetation of Donana national park. Journal of Spain. Tech. Rep, 3(1): 318-325.
- Vivan, L. M., Cary, G. J., 2011. Relationship between leaf traits and fire response strategies in shrub species of a mountainous region of southeastern Australia. Annals of Botany, available online at www.aob.oxfordjournals.org, 1-12.
- Shariatmadari, H., 2011. Effect of fire on Plant functional type in two arid and semi-arid rangeland (Bazangan and Jowzak). M.Sc. thesis, Ferdowsi University, Mashhad, Iran, 130p. (In Persian).
- Apaza‐Quevedo, A., Lippok, D., Hensen, I., Schleuning, M., Both, S., 2015. Elevation, Topography, and Edge Effects Drive Functional Composition of Woody Plant Species in Tropical Montane Forests. Biotropica 47(4): 449-458.
- Reich, P. B., Peterson, D. W., Wedin, D. A., Wrage, K., 2001. Fire and Vegetation Effects on Productivity and Nitrogen Cycling Across a Forest–Grassland Continuum. Ecology, 82(6): 1703-1719.
- Dale, G., Brockway, A., Gatewood, R. G., Paris, R. B., 2002. Restoring fire as an ecological process in short grass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. J. Environmental Management, 65(2):135-152.
- Snyman, H. A., 2004. Estimating the short-term impact of fire on rangeland productivity in a semi-arid climate of South Africa. Journal of arid environments, 59: 685-697.
- Jones, B., Stanley, F. F., Leslie, D. M., Engle, D. M., Lochmiller, R. L., 2000. Herpetofaunal responses to brush management with herbicide and fire. Journal of Range Management, 53: 154-158.
- Kristofer, R. B., 2006. Soil physiochemical changes following 12 years of annual burning in humid-subtropical tall grass prairie: a hypothesis. Acta Ecologica, 30: 407-413.
- Omidzadeh Ardali, E., Zare Chahouki, A. M., Arzani, H., Ebrahimi, A. Tahmasebi, P., 2016. Comparison of Performance of three the multi-scale plots for evaluation of plant diversity in Karsanak Rangeland of Shahrekord. Plant Research, 30(1): 1-15. (In Persian)
- Arzani, H., Abedi, M., 2015. Rangeland assessment: Vegetation measurement. University of Tehran press, 304pp. (In Persian)
- Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., Van der Heijden, M. G. A., Pausas, J. G., Poorter, H., 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335-380.
- Shryock, D. F., DeFalco, L. A., Esque, T. C., 2014. Life‐history traits predict perennial species response to fire in a desert ecosystem. Ecology and evolution, 4(15): 3046-3059.
- Ortman, J., Beran, D. D., 2008. Grassland management with prescribed Fire. Nebraska cooperative extension. EC, 148: 122-132.
- Rafiee, F., Jankju, M., Ejtehadi, H., 2015. Investigation on tolerant, adapted and sensitive plant traits to chronological wildfires. Iranian Journal of Range and Desert Research, 22(1): 73-85. (In Persian)
- Mirzaei Mossivand, A., Keivan Behjou, F., Zandi Esfahan, E., Ghorbani, A., 2015. Assessment of Fire Effects on Surface Cover Changes and Forage Production (Case Study: Delfan County, Lorestan Province, Iran). Journal of Rangeland Science, 5(1): 60-71. (In Persian)
- Shokri, M., Safaian, N., Atrakchali, A., 2002. Investigation of the effects of fire on vegetation ariations in Takhti Yeylagh-Golestan national park. Iranian J. of Natural Recourse, 55(2): 273. (In Persian)
- Rafiee, F., Jankju, M., Ejtehadi, H., 2015. Plant functional groups (PFTs) semi-arid rangelands marker to detect the secondary succession after fire. Iranian Journal of Applied Ecology, 38(8): 17-27. (In Persian)
- Bock, J. H., Bock, C. E., 1992. Vegetation response to wildfire on native versus exotic Arizon grassland. Journal of Vegetation Science, 3:439-446.
- Jankju, M., 2009. Range improvement and development. Academic Center for Education, Culture and Research, Mashhad, Iran, 225p. (In Persian)
- Valizadeh, M., Moghadam, M., 1997. Experimental design in agriculture. Parivar Pub., 395 p. (In Persian).
- Fatahi, B., Tahmasebi, A., 2010. The Effect of Fire on Vegetation Change in Mountain Zagros Mountain Rangelands (Case Study: Asadabad Neck Rocks, Hamedan Province 4 (2): 239-228. (In Persian)
- Grootemaat, S., Wright, I. J., Bodegom, P. M., Cornelissen, J. H., Cornwell, W. K., 2015. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology DOI: 10.1111/1365-2435.12449.
- Ripley, B., Visser, V., Christin, P. A., Archibald, S., Martin, T., Osborne, C., 2015. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type. Ecology, 96(10): 2679-2691.
- Dwyer, L., Stewart, D., Hamilton, R., Houwing, L., 1992. Ear position and vertical distribution of leaf area in corn. Agronomy Journal, 84: 430-438.
- Tahmasebi, P., 2013. Investigating the destructive effects and potential of fire use as a means of managing the vegetation of semi-steppe pastures. Range and Watershed Management, 66 (2): 287-298. (In Persian)