شبیه سازی فرآیند تولید گاز متان از پسماندهای دامی در یک بیوراکتور ناپیوسته
محورهای موضوعی :
انرژی های تجدید پذیر
حسین بیکی
1
*
,
الهام جانانه
2
1 - استادیار گروه مهندسی شیمی، دانشگاه صنعتی قوچان، قوچان، ایران *(مسوول مکاتبات).
2 - پزشک عمومی، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی مشهد، ایران.
تاریخ دریافت : 1394/12/26
تاریخ پذیرش : 1395/09/03
تاریخ انتشار : 1398/08/01
کلید واژه:
مدلسازی ریاضی,
بیوراکتور ناپیوسته,
تخمیر بیهوازی,
تولید گاز متان,
چکیده مقاله :
زمینه و هدف: با توجه به اهمیت حفظ محیط زیست و ضرورت استفاده از انرژی های نو و جایگزین سوخت های مرسوم، استفاده از انرژی های تجدید پذیر مورد توجه فراوان قرار گرفته است. با توجه به این ضرورت در این پژوهش یک بیوراکتور ناپیوسته تولید گاز متان از پسماندهای دامی مدل سازی و شبیه سازی شده است. روش بررسی: از سینتیک مونود برای بیان رابطه بین سرعت رشد میکروارگانیسمها و غلظت سوبسترا استفاده شده است. معادلات مصرف سوبسترا و تولید میکروارگانیسم ها و گاز متان از روش عددی رانگ کوتای مرتبه چهار حل می شوند. اثر غلظت اولیه میکروارگانیسم ها بر تولید گاز متان نیز بررسی شده است. غلظت اولیه سوبسترا و میکروارگانیسم ها به ترتیب g/L 74/51 و g/L 61/1 می باشد. یافته ها: نتایج بدست آمده از این پژوهش نشان داد که مدل ریاضی حدود %53/8 از داده های آزمایشگاهی انحراف دارد. بر اساس مدل ارایه شده میزان گاز متان تولید شده پس از 70 روز برابر با g/L 29/10 میباشد. میزان تجزیه سوبسترا و تولید گاز متان، به زمان ماند سوبسترا بستگی دارد. افزایش غلظت اولیه میکروارگانیسم ها موجب تولید گاز متان در مدت زمان کم تری می شود. میزان گاز متان تولیدی مستقل از غلظت اولیه میکروارگانیسم ها می باشد. بحث و نتیجه گیری: مدل ارایه شده در این پژوهش می تواند برای پیش گویی مدت زمان مورد نیاز برای انجام واکنش، عملکرد بهینه بیوراکتور، طراحی تجهیزات فرآیندی مربوطه، افزایش مقیاس تجهیزات، مانند مخزن ذخیره سازی و کنترل مناسب جهت تولید متان با خلوص بالا و حجم بیش تر در بیوراکتورها مناسب باشد..
چکیده انگلیسی:
Background and Objective: Considering the importance of environmental protection and necessity of using new energy sources and innovative fuels, using of renewable energies have been a great concern. Due to this necessity, in this study, mathematical modeling and simulation of a batch bioreactor to produce methane from livestock waste was investigated numerically. Method: The relationship between microorganism’s growth rate and substrate concentration were established by Monod model. The equations of mathematical model were solved with fourth order Rung Kutta. The effect of initial microorganisms’ concentration on methane production was also investigated. Initial concentration of substrate and microorganisms are 51.74 g/L and 1.61 g/L, respectively. Findings: The results revealed that the mathematical model average deviation from experimental data is 8.53%. The amount of methane produced after 70 days is equal to 10.29 g/L. The substrate disintegration and methane production are a function of substrate retention time. Enhancement in the initial concentration of microorganisms causes methane gas production in less time. The amount of methane gas produced is independent of initial microorganisms’ concentration. Discussion and Conclusion: The model which presented in this study could be used to predict the time required to carry out the reaction, ooptimum performance of bioreactor, the relevant process equipment design, scale up of equipment such as digestive and appropriate control of operation to produce high-purity methane and higher volume of biogas in the bioreactor.
منابع و مأخذ:
- HilkiahIgoni, A., Abowei M., Ayotamuno, M., Eze, C., 2009. “Comparative Evaluation of Batch and Continuous Anaerobic Digesters in Biogas Production from Municipal Solid Waste using Mathematical Models”. The CIGR Ejournal, Manuscript EE Vol. 10, pp. 7-19.
- Buekens, A., 2005. “Energy Recovery from Residual Waste by Mean Anaerobic Digestion Technologies”. The Future of Residual Waste Management in Europe Conference.
- Wilkie, A. C., 2005. “Anaerobic digestion”. Biology and Benefits”. Dary Manure Management Conference, Natural resource, Cornell University, Ithaca, March 15-17, pp. 63-72.
- Zhou, H., Loffer, D., Kranert, M., 2011. “Model-based Predictions of Anaerobic Digestion of Agricultural Substrates for Biogas Production”. Bioresource Technology, Vol. 102, pp. 10819-10828.
- Show, K., Lee, D., Pan, X., 2013. “Simultaneous Biological Removal of Nitrogen-Sulfur-Carbon: Recent Advances and Challenges”. Bio Technology Advances, Vol. 31, pp. 409-420.
- Li, Ch., Champagne, P., Anderson, B., 2011. “Evaluating and Modeling Biogas Production from Municipal Fat, Oil and Grease and Synthetic Kitchen Waste in Anaerobic Co-digestions”. Bioresource Technology, Vol. 102, pp. 9471-9480.
- Grieder, Ch., Mittweg, G., Dhillon, B., Montes, J., Orsini, E., Melchinger, A., 2012. “Kinetics of Methane Fermentation Yield in Biogas Reactor: Genetic Variation and Association with Chemical Composition in Maize”. Biomass and Bioenergy, Vol.37, pp. 132-141.
- Meltcalf and Eddy, 2003. “Wastewater Engineering-Treatment, Disposal and Reuse”. 4thEdition, Tata McGraw Hill, New Delhi.
- Bouallagui, H., Touhami, Y., Cheikh, R. B., Hamidi, M., 2005. “Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes”. Process Biochem, Vol. 40, pp. 989-995.
- Callaghan, F.J., Wase, D. A. J., Thyaniythy, K., Forster, C. F., 2002. “Continuous CoDigestion of Cattle Slurry with Fruit and Vegetable Waste and Chicken Manure”. Biomass Bioenergy, Vol. 27, pp. 71-77.
- Vieitez, E. R., Ghsh, S., 1999. “Bio gasification of Solid Wastes by Two Phases Anaerobic Fermentation”. Biomass and Bioenergy, Vol. 16, pp. 299-309.
- Mata Alvarez, J., Maca, S., Liabres, P., 2000. “Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives”. Bio resours Technology, Vol. 74, pp. 3-16.
Buswell, A. M., Mueller, H. F., 1952. “Mechanism of Methane Fermentation”, Industrial and Engineering Chemistry, Vol. 44, pp. 550 – 552.
Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Boyle, W. C., 1977. “Energy Recovery from Sanitary Landfills”. Microbial Energy Conversion, Edited by: H. G. Schlegel & J. Barnea, pp. 119 – 138.
Baserga, U., 1998. “Land wirtschaftliche Co-Vergärungs-Biogasanlagen. FAT-Berichte Nr. 512, Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik, Tänikon, Schweiz. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Keymer, U.; Schilcher, A., 2003, “Biogasanlagen: Berechnung der Gasausbeute von Kosubstraten. Bayrische Landesanstalt für Landwirtschaft. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; Schreiner, M.; Zollitsch, W.; Pötsch, E., 2007 : Methane Production trough Anaerobic Digestion of Various Energy Crops Grown in Sustainable Crop Rotations. Bioresource Technology, Vol. 98, No. 17, 3204 -3212. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Yang, L., Huang, Y., Zhao, M., Huang Z., Miao, H., Xu, Z., Ruan, W., 2015. “Enhancing biogas generation performance from food wastes by high solids thermophilic anaerobic digestion: Effect of pH adjustment”, International Biodeterioration & Biodegradation, vol. 105, pp. 153-159.
Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., Badr, Y., 2016, “Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry”, Renewable Energy, vol. 87, pp. 592-598.
Beba, A., Atalay, F. S., 1986. “Mathematical Models for Methane Production in Batch Fermenters”. Biomass, Vol. 11, pp. 173 – 184.
Biswas, J., Chowdhury, R., Bhattacharya, P., 2006. “Experimental Studies and Mathematical Modeling of a Semibatch Bio-digester Using Municipal Market Waste as Feed Stock”. Indian Journal of Biotechnology, Vol. 5, pp. 498-505.
Srisertpol, J, .Srinakorn, P, .Kheawnak, A, .Chamniprasart, K., 2010. “Mathematical Modeling and Parameters Estimation of an Anaerobic Digestion of Shrimp of Culture Pond Sediment in a Biogas Process”. International Journal of Energy and Environment, Vol. 4, pp. 213-220.
Gavala, H.N., Skiadas, I.V., Ahring, B.K., Lyberatos, G., 2006. “Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modeling of the anaerobic digestion process”. Water Sci. Technol, Vol. 53, pp. 271–279.
Afazeli, H., Jafari, A., Rafiee, Sh., Nosrati, M., 2014, “An investigation of biogas production potential from livestock and slaughterhouse wastes”, Renewable and Sustainable Energy Reviews, vol. 34, pp. 380-386.
Noorollahi, Y., Kheirrouz, M., Farabi Asl, H., Yousefi, H., Hajinezhad, A., 2015, “Biogas production potential from livestock manure in Iran”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 748-754.
Abdeshahian, P., Lim, J. Sh., Ho, W., Hashim, H., Lee, Ch. T., 2016, “Potential of biogas production from farm animal waste in Malaysia”, Renewable and Sustainable Energy Reviews, vol. 60, pp. 714-723.
Powell, E. O., 1967. “The Growth Rate of Microorganisms as a Function of Substrate Concentration”, Microbial Physiology and Continuous Culture. 3rd International Symposium, Salisbury, London, pp. 34– 56.
Birjukow, W. W.; Kantere, W. M., 1985. “Optimizing periodical processes of microbiological synthesis”, (russ.). Nauka, Moskau.
Gompertz, B., 1825. "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies", Philos. Trans. R. Soc. Lond., Vol. 115: pp. 513-585.
Contois, D. E., 1959. “Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures”. Journal of General Microbiology, Vol. 21, pp. 40 – 50.
Okpokwasili, G. C., Nweke, C. O., 2005. “Microbial Growth and Substrate Utilization Kinetics”. African Journal of Biotechnology Vol. 5, pp. 305-317.
Aworanti, O. A., Agarry, S. E., Arinkoola, A. O., Adeniyi, V., 2011. “Mathematics Modeling for the Conversion of Animal Waste to Methane in Batchbioreactor”. International Journal of Engineering Science and Technology, Vol. 3, pp. 573-581.
_||_
- HilkiahIgoni, A., Abowei M., Ayotamuno, M., Eze, C., 2009. “Comparative Evaluation of Batch and Continuous Anaerobic Digesters in Biogas Production from Municipal Solid Waste using Mathematical Models”. The CIGR Ejournal, Manuscript EE Vol. 10, pp. 7-19.
- Buekens, A., 2005. “Energy Recovery from Residual Waste by Mean Anaerobic Digestion Technologies”. The Future of Residual Waste Management in Europe Conference.
- Wilkie, A. C., 2005. “Anaerobic digestion”. Biology and Benefits”. Dary Manure Management Conference, Natural resource, Cornell University, Ithaca, March 15-17, pp. 63-72.
- Zhou, H., Loffer, D., Kranert, M., 2011. “Model-based Predictions of Anaerobic Digestion of Agricultural Substrates for Biogas Production”. Bioresource Technology, Vol. 102, pp. 10819-10828.
- Show, K., Lee, D., Pan, X., 2013. “Simultaneous Biological Removal of Nitrogen-Sulfur-Carbon: Recent Advances and Challenges”. Bio Technology Advances, Vol. 31, pp. 409-420.
- Li, Ch., Champagne, P., Anderson, B., 2011. “Evaluating and Modeling Biogas Production from Municipal Fat, Oil and Grease and Synthetic Kitchen Waste in Anaerobic Co-digestions”. Bioresource Technology, Vol. 102, pp. 9471-9480.
- Grieder, Ch., Mittweg, G., Dhillon, B., Montes, J., Orsini, E., Melchinger, A., 2012. “Kinetics of Methane Fermentation Yield in Biogas Reactor: Genetic Variation and Association with Chemical Composition in Maize”. Biomass and Bioenergy, Vol.37, pp. 132-141.
- Meltcalf and Eddy, 2003. “Wastewater Engineering-Treatment, Disposal and Reuse”. 4thEdition, Tata McGraw Hill, New Delhi.
- Bouallagui, H., Touhami, Y., Cheikh, R. B., Hamidi, M., 2005. “Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes”. Process Biochem, Vol. 40, pp. 989-995.
- Callaghan, F.J., Wase, D. A. J., Thyaniythy, K., Forster, C. F., 2002. “Continuous CoDigestion of Cattle Slurry with Fruit and Vegetable Waste and Chicken Manure”. Biomass Bioenergy, Vol. 27, pp. 71-77.
- Vieitez, E. R., Ghsh, S., 1999. “Bio gasification of Solid Wastes by Two Phases Anaerobic Fermentation”. Biomass and Bioenergy, Vol. 16, pp. 299-309.
- Mata Alvarez, J., Maca, S., Liabres, P., 2000. “Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives”. Bio resours Technology, Vol. 74, pp. 3-16.
Buswell, A. M., Mueller, H. F., 1952. “Mechanism of Methane Fermentation”, Industrial and Engineering Chemistry, Vol. 44, pp. 550 – 552.
Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Boyle, W. C., 1977. “Energy Recovery from Sanitary Landfills”. Microbial Energy Conversion, Edited by: H. G. Schlegel & J. Barnea, pp. 119 – 138.
Baserga, U., 1998. “Land wirtschaftliche Co-Vergärungs-Biogasanlagen. FAT-Berichte Nr. 512, Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik, Tänikon, Schweiz. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Keymer, U.; Schilcher, A., 2003, “Biogasanlagen: Berechnung der Gasausbeute von Kosubstraten. Bayrische Landesanstalt für Landwirtschaft. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; Schreiner, M.; Zollitsch, W.; Pötsch, E., 2007 : Methane Production trough Anaerobic Digestion of Various Energy Crops Grown in Sustainable Crop Rotations. Bioresource Technology, Vol. 98, No. 17, 3204 -3212. Cited by Gerber, M., Span, R., 2008. “An Analysis of Available Mathematical Models for Anaerobic Digestion of Organic Substances for Production of Biogas”. International Gas Union Research Conference.
Yang, L., Huang, Y., Zhao, M., Huang Z., Miao, H., Xu, Z., Ruan, W., 2015. “Enhancing biogas generation performance from food wastes by high solids thermophilic anaerobic digestion: Effect of pH adjustment”, International Biodeterioration & Biodegradation, vol. 105, pp. 153-159.
Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., Badr, Y., 2016, “Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry”, Renewable Energy, vol. 87, pp. 592-598.
Beba, A., Atalay, F. S., 1986. “Mathematical Models for Methane Production in Batch Fermenters”. Biomass, Vol. 11, pp. 173 – 184.
Biswas, J., Chowdhury, R., Bhattacharya, P., 2006. “Experimental Studies and Mathematical Modeling of a Semibatch Bio-digester Using Municipal Market Waste as Feed Stock”. Indian Journal of Biotechnology, Vol. 5, pp. 498-505.
Srisertpol, J, .Srinakorn, P, .Kheawnak, A, .Chamniprasart, K., 2010. “Mathematical Modeling and Parameters Estimation of an Anaerobic Digestion of Shrimp of Culture Pond Sediment in a Biogas Process”. International Journal of Energy and Environment, Vol. 4, pp. 213-220.
Gavala, H.N., Skiadas, I.V., Ahring, B.K., Lyberatos, G., 2006. “Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modeling of the anaerobic digestion process”. Water Sci. Technol, Vol. 53, pp. 271–279.
Afazeli, H., Jafari, A., Rafiee, Sh., Nosrati, M., 2014, “An investigation of biogas production potential from livestock and slaughterhouse wastes”, Renewable and Sustainable Energy Reviews, vol. 34, pp. 380-386.
Noorollahi, Y., Kheirrouz, M., Farabi Asl, H., Yousefi, H., Hajinezhad, A., 2015, “Biogas production potential from livestock manure in Iran”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 748-754.
Abdeshahian, P., Lim, J. Sh., Ho, W., Hashim, H., Lee, Ch. T., 2016, “Potential of biogas production from farm animal waste in Malaysia”, Renewable and Sustainable Energy Reviews, vol. 60, pp. 714-723.
Powell, E. O., 1967. “The Growth Rate of Microorganisms as a Function of Substrate Concentration”, Microbial Physiology and Continuous Culture. 3rd International Symposium, Salisbury, London, pp. 34– 56.
Birjukow, W. W.; Kantere, W. M., 1985. “Optimizing periodical processes of microbiological synthesis”, (russ.). Nauka, Moskau.
Gompertz, B., 1825. "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies", Philos. Trans. R. Soc. Lond., Vol. 115: pp. 513-585.
Contois, D. E., 1959. “Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures”. Journal of General Microbiology, Vol. 21, pp. 40 – 50.
Okpokwasili, G. C., Nweke, C. O., 2005. “Microbial Growth and Substrate Utilization Kinetics”. African Journal of Biotechnology Vol. 5, pp. 305-317.
Aworanti, O. A., Agarry, S. E., Arinkoola, A. O., Adeniyi, V., 2011. “Mathematics Modeling for the Conversion of Animal Waste to Methane in Batchbioreactor”. International Journal of Engineering Science and Technology, Vol. 3, pp. 573-581.