تعیین نقشه کاربری اراضی با استفاده از سنجندهETM+ (مطالعه موردی حوزه آبخیز هندودر)
محورهای موضوعی : سیستم اطلاعات جغرافیاییرضوان داودپور 1 , حمید ترنج زر 2
1 - باشگاه پژوهشگران جوان و نخبگان، واحد اراک، دانشگاه آزاد اسلامی اراک، ایران* (مسوول مکاتبات)
2 - گروه محیطزیست، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران
کلید واژه: حوزه آبخیز هندودر, سنجش از دور, سنجنده ETM+, تعیین کاربری اراضی,
چکیده مقاله :
زمینه و هدف: رشد سریع جمعیت سبب استفاده بیش از حد ظرفیت و فشار مضاعف بر منابع طبیعی شده که در نتیجه آن تغییرات سریع کاربری اراضی اتفاق افتاده است. بنابراین شناخت سریع و دقیق انواع پوشش زمین می تواند نقش مؤثری در برنامه ریزی و مدیریت داشته باشد. داده های ماهواره ای به دلیل دید وسیع و یکپارچه، در برگرفتن بخش عمده ای از طیف الکترومغناطیسی و به روز بودن تصاویر برای تهیه نقشه های کاربری اراضی مناسب می باشند. مطالعه حاضر با هدف تعیین نقشه کاربری اراضی با استفاده از سنجندهETM+ (مطالعه موردی حوزه آبخیز هندودر) انجام گرفته است. روش بررسی: از تصاویر ماهواره ای لندست 7 برای تعیین پوشش و کاربری اراضی حوزه آبخیز هندودر استان مرکزی استفاده شد. برداشت موقعیت انواع کاربری و پوشش اراضی از سطح حوزه مورد نظر با نقاط تست و کنترل با استفاده ازGPS انجام گرفت. طبقه بندی به روش نظارت شده و با چهار الگوریتم مختلف طبقه بندی که شامل حداکثر احتمال، حداقل فاصله تا میانگین،Minimum Mahalanobis Distance و متوازی السطوح بر روی گروه های سه باندی صورت گرفت. یافته ها: جهت انتخاب بهترین گروه سه باندی از روش محاسبه حد شاخص مطلوبیت (OIF) برای باند های اصلی، شاخص ها و تجزیه مؤلفه ها استفاده شد. تصاویر ماهواره ای با استفاده از الگوریتم های طبقه بندی نظارت شده و اعمال نمونه های برداشتی از سطح منطقه، طبقه بندی گردید. از بین الگوریتم ها، الگوریتم طبقه بندی حداکثر احتمال دارای نتایج بهتری از انواع پوشش و کاربری های اراضی بر روی تصاویر بود. بحث و نتیجه گیری: بهترین نتیجه طبقه بندی در مقایسه با نقشه واقعیت زمینی، با استفاده از مجموعه باند های b1، b4 و b7 با دقت کلی25/81 درصد در الگوریتم طبقه بندی حداکثر احتمال به دست آمد که بیانگر قابلیت و کارایی نسبتاً خوب داده های ETM+ در تهیه نقشه نهایی کاربری اراضی می باشد.
Background and Objective: High population growth rate has led to excessive use of capacity and double pressure on natural resources, resulting in rapid land use changes. Therefore, quick and accurate identification of types of land cover can play an effective role in planning and management. Satellite data because of vast and integrated sight covering with different electromagnetic spectrums and updated images are very suitable for making applicable Land use maps. The aim of this study is preparation of land use map using ETM+ landsat (a Case Study in Hendodar Watershed) Method: The Landsat 7 satellite images were used to determine the land use changes of Hendodar watershed in Markazi province. The GPS was used to determine the position of land use and land cover types on the basis of taking test and ground control points on field investigation. Obtained samples were used for supervised classification with four different algorithms including maximum Likelihood, minimum distance, Minimum Mahalanobis Distance and Box Classification. Findings: The optimum index factor (OIF) for the main bands and PCA (principal coordinate analysis) were used to select the optimum combination of three bands in a satellite image to create a color composite, sample set and other operation and classification. Among the algorithms, the maximum likelihood classification algorithm had better results from the types of coverage and lands use on the images. Discussion and Conclusion: The maximum likelihood classification algorithm with combination of b7, b4, b1 bands with 81.25% accuracy is the best algorithms of land use determination and classification comparing with real ground map of the area.
- Farajzadeh, M., Fallah, M. 2008. Assessment of the effect of land use change and land cover on flood regime in Tajan River using remote sensing technique, Geographic Research, 64:89-108.
- Yan, G. 2003. Pixel based and object oriented image for coal fire research. on line: http://www.ITC.com accessed in July 2008, pp 3-99.
- Rezaei Moghadam, M., Andrani, S., Valizadeh, Kh., Almaspour, F. 2016. Determine the best land-use and land-use extraction algorithm and discovery of changes from Landsat satellite imagery (case study: Maraghe Soufi-chai basin), Geographic space, 16,55:85-65.
- Riahi Bakhtiari, H. 2000. Determining the most suitable method for mapping natural resources by using satellite data in the Argan Dasht region, Master's degree in forestry, Faculty of Natural Resources, Tehran University.
- Rafiei, R., Salman Mahini, A., Khorasani, N. 2011. Determination of land use change by three-fold after-class method LandSat Satellite Images, Remote Sensing Applications in Natural Resources Science, 2(3):53-63
- Zahedi Fard, N. 2002. Preparation of land use map using satellite data in Bazoft watershed, Master's thesis of Soil Science, Faculty of Agriculture, Isfahan University of Technology.
- Stenback, J., Congalton, R. 2001, Using Tematic mapper Imagery to Eximine Forest Understory. PE and Rs Photogrametric Engineering and Remote sensing, 56: 1258-1290.
- Rashidi, c. 2001. Preparation of vegetation map using Landsat 7 satellite data system GIS geographic information system in Kangan region, Master's thesis, Faculty of Natural Resources, Guilan University.
- Jensen, J. 2005. Introductory digital image processing: A remote sensing perspective (3rd ed.), Upper Saddle River, NJ: Prentice Hall, 526 pages.
- Latifi, H., Oladi, J., S Sarouei, S., Jalilvand, H. 2007. Evaluation of ETM+ satellite data capability for mapping of forest cover areas-shrub-rangeland landscapes (Case study of Neka-Zalam Rud-Mazandaran area), Agricultural Science and Technology, 11(40):439-447.
- Feyzi Zadeh, B., Azizi, H. 2007. Extraction of land use in Malekan city using satellite images ETM Landsat 7, Amayesh, No 3.
- Shetayi, Sh. Abdi, A. 2008. Preparation of Land Use Map in Zagros Mountains Using ETM + Sensor Data in Area: Sorkhab Branch of Khoramabad, Lorestan, Agricultural Sciences and Natural Resources, 14(1).
- Billah, Masum and Rahman, anisur gazi, 2002. Land cover Mapping of Khulna city Applying Remote sensing Technique, proc, 12 conf.on Geoinformation Reasearch, Bridging the Pocific and Atlantic, University of Gavel, Swen,7-92004.
- Tapiador, F.J., Casanova, J.L. 2003. Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landscape and Urban Planning Jurnal, Volume 62, Number2, 10 January 2003, pp.103-115.
- Reis, S., Nisaic, R., Yalcin, A., Halilibrahim, I., Yomralioglu, T. 2003. Monitoring Landuse Changes by GIS and Remote sesing Techniques: A case study of Trabzone. 2 FIG Regional Conference Marrakech, December 2-5, Morocco.
- De Wit, A.j.W. 2003. Land use mapping and monitoring in the Netherlands using remote sensing data, Geoscience and Remote Sensing Symposium, 2003, IGARS apos, 03. Proceeding. IEEE Internatioanal Volume 4, Issue, 21-25 July 2003 Page: 2614-2616.
- Hosseini, S.Z., Malekian, A. Tazeh. M. 2005. Landuse mapphng of Maybod area using IRS-Pan images, International Congress on Information Technology in Agriculture, Food and Environment, Turkey.
- Mokhtari, A.Feiznia, S., Ahmadi, H., Rahnema, F. 2000. Application of remote sensing in the preparation of land use information layers and land cover in the soil erosion model, Research and Development, 13(46):144.
- Hosseini, S. 2002. Landsat ETM Satellite Data Capability for Land Use Mapping (Case Study: Mazandaran Province - Chamestan) Master's Degree in Commodity Management, Faculty of Natural Resources, University of Tehran.
- Khajeeddin, A. 1998. Use of Landsat MMS satellite data in studying plant communities and determining lands of Jasmourian region, Proceedings of the 2nd National Conference on Desertification, Different Methods of Desertification, First Edition, Forestry and Rangeland Research in the Country, 175: 48-41
- Smith, M. O., Ustin, S. L., Adams, J., B. Gillespie, A. R. 2005. Vegetation in Deserts: I. Regional Measure of Abundance from Multispectral Images. Remot sensing of Environment, 31:1-26.
- Fillehkesh, A. 2000. Investigating the Possibility of Using Landsat TM Satellite Data for Vegetation Mapping and Comparing it with Ground Techniques in Sabzevar Region, Master's Thesis, Faculty of Natural Resources, Tarbiat Modares University, pp 98.
- Bani Neameh, J. 2003. Land evaluation for Land Use Planning with especial attention to sustainable fodder production in the Rouzeh Chai catchment of Orumiyeh area- iran. Msc. Thsis, ITC, Enschede, The Netherlands.
- Arkhi, S., Adibnejad, M. 2011. Evaluation of the Efficiency of Support Vector Machine Algorithms for Land Use Classification Using ETM Landsat Satellite Data (Case Study: Ilam dam Dam), Iran Rangeland and Desert Research, 18(3):420-440.
- Melisa, A. M., Jordan, J.D. 2003. Spatialy distributed Watershed mapping and modeling, Thermal maps and vegetation Indices to enhance land cover and surface microclimate mapping;Part I.Journal of spatial hydrology, 3(2):325-33.
- Demorate, F. 1998. Land cover mapping estimated in Rendonia, Brazil. Int.J. Remote sensing, vol 18, No.6.
- Liu, Q., Takamura, T., Takeuchi, N. Shao, G. 2011. Mapping of boreal vegetation of a temperate mountain in chaina by multitemporal Landsat TM imagery. Int, J, of remote sensing, 23(17):3385-3405.
- Lillesand, T, Ralph, M, Kieffer W. and Chipman, Jonathan W, 2004, Remote sensing and image Interpretation. 5th Edition, New York: John Wiley & Sons, 763p.
_||_
- Farajzadeh, M., Fallah, M. 2008. Assessment of the effect of land use change and land cover on flood regime in Tajan River using remote sensing technique, Geographic Research, 64:89-108.
- Yan, G. 2003. Pixel based and object oriented image for coal fire research. on line: http://www.ITC.com accessed in July 2008, pp 3-99.
- Rezaei Moghadam, M., Andrani, S., Valizadeh, Kh., Almaspour, F. 2016. Determine the best land-use and land-use extraction algorithm and discovery of changes from Landsat satellite imagery (case study: Maraghe Soufi-chai basin), Geographic space, 16,55:85-65.
- Riahi Bakhtiari, H. 2000. Determining the most suitable method for mapping natural resources by using satellite data in the Argan Dasht region, Master's degree in forestry, Faculty of Natural Resources, Tehran University.
- Rafiei, R., Salman Mahini, A., Khorasani, N. 2011. Determination of land use change by three-fold after-class method LandSat Satellite Images, Remote Sensing Applications in Natural Resources Science, 2(3):53-63
- Zahedi Fard, N. 2002. Preparation of land use map using satellite data in Bazoft watershed, Master's thesis of Soil Science, Faculty of Agriculture, Isfahan University of Technology.
- Stenback, J., Congalton, R. 2001, Using Tematic mapper Imagery to Eximine Forest Understory. PE and Rs Photogrametric Engineering and Remote sensing, 56: 1258-1290.
- Rashidi, c. 2001. Preparation of vegetation map using Landsat 7 satellite data system GIS geographic information system in Kangan region, Master's thesis, Faculty of Natural Resources, Guilan University.
- Jensen, J. 2005. Introductory digital image processing: A remote sensing perspective (3rd ed.), Upper Saddle River, NJ: Prentice Hall, 526 pages.
- Latifi, H., Oladi, J., S Sarouei, S., Jalilvand, H. 2007. Evaluation of ETM+ satellite data capability for mapping of forest cover areas-shrub-rangeland landscapes (Case study of Neka-Zalam Rud-Mazandaran area), Agricultural Science and Technology, 11(40):439-447.
- Feyzi Zadeh, B., Azizi, H. 2007. Extraction of land use in Malekan city using satellite images ETM Landsat 7, Amayesh, No 3.
- Shetayi, Sh. Abdi, A. 2008. Preparation of Land Use Map in Zagros Mountains Using ETM + Sensor Data in Area: Sorkhab Branch of Khoramabad, Lorestan, Agricultural Sciences and Natural Resources, 14(1).
- Billah, Masum and Rahman, anisur gazi, 2002. Land cover Mapping of Khulna city Applying Remote sensing Technique, proc, 12 conf.on Geoinformation Reasearch, Bridging the Pocific and Atlantic, University of Gavel, Swen,7-92004.
- Tapiador, F.J., Casanova, J.L. 2003. Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landscape and Urban Planning Jurnal, Volume 62, Number2, 10 January 2003, pp.103-115.
- Reis, S., Nisaic, R., Yalcin, A., Halilibrahim, I., Yomralioglu, T. 2003. Monitoring Landuse Changes by GIS and Remote sesing Techniques: A case study of Trabzone. 2 FIG Regional Conference Marrakech, December 2-5, Morocco.
- De Wit, A.j.W. 2003. Land use mapping and monitoring in the Netherlands using remote sensing data, Geoscience and Remote Sensing Symposium, 2003, IGARS apos, 03. Proceeding. IEEE Internatioanal Volume 4, Issue, 21-25 July 2003 Page: 2614-2616.
- Hosseini, S.Z., Malekian, A. Tazeh. M. 2005. Landuse mapphng of Maybod area using IRS-Pan images, International Congress on Information Technology in Agriculture, Food and Environment, Turkey.
- Mokhtari, A.Feiznia, S., Ahmadi, H., Rahnema, F. 2000. Application of remote sensing in the preparation of land use information layers and land cover in the soil erosion model, Research and Development, 13(46):144.
- Hosseini, S. 2002. Landsat ETM Satellite Data Capability for Land Use Mapping (Case Study: Mazandaran Province - Chamestan) Master's Degree in Commodity Management, Faculty of Natural Resources, University of Tehran.
- Khajeeddin, A. 1998. Use of Landsat MMS satellite data in studying plant communities and determining lands of Jasmourian region, Proceedings of the 2nd National Conference on Desertification, Different Methods of Desertification, First Edition, Forestry and Rangeland Research in the Country, 175: 48-41
- Smith, M. O., Ustin, S. L., Adams, J., B. Gillespie, A. R. 2005. Vegetation in Deserts: I. Regional Measure of Abundance from Multispectral Images. Remot sensing of Environment, 31:1-26.
- Fillehkesh, A. 2000. Investigating the Possibility of Using Landsat TM Satellite Data for Vegetation Mapping and Comparing it with Ground Techniques in Sabzevar Region, Master's Thesis, Faculty of Natural Resources, Tarbiat Modares University, pp 98.
- Bani Neameh, J. 2003. Land evaluation for Land Use Planning with especial attention to sustainable fodder production in the Rouzeh Chai catchment of Orumiyeh area- iran. Msc. Thsis, ITC, Enschede, The Netherlands.
- Arkhi, S., Adibnejad, M. 2011. Evaluation of the Efficiency of Support Vector Machine Algorithms for Land Use Classification Using ETM Landsat Satellite Data (Case Study: Ilam dam Dam), Iran Rangeland and Desert Research, 18(3):420-440.
- Melisa, A. M., Jordan, J.D. 2003. Spatialy distributed Watershed mapping and modeling, Thermal maps and vegetation Indices to enhance land cover and surface microclimate mapping;Part I.Journal of spatial hydrology, 3(2):325-33.
- Demorate, F. 1998. Land cover mapping estimated in Rendonia, Brazil. Int.J. Remote sensing, vol 18, No.6.
- Liu, Q., Takamura, T., Takeuchi, N. Shao, G. 2011. Mapping of boreal vegetation of a temperate mountain in chaina by multitemporal Landsat TM imagery. Int, J, of remote sensing, 23(17):3385-3405.
- Lillesand, T, Ralph, M, Kieffer W. and Chipman, Jonathan W, 2004, Remote sensing and image Interpretation. 5th Edition, New York: John Wiley & Sons, 763p.