مدلسازی پیش بینی نرخ ارز در ایران با استفاده از شبکه عصبی مبتنی بر الگوریتم ژنتیک و الگوریتم ذرات انبوه
محورهای موضوعی : دو فصلنامه علمی - تخصصی اقتصاد توسعه و برنامه ریزیعلی جمالی 1 * , سعید دائی کریم زاده 2
1 - گروه مدیریت، واحد پرند، دانشگاه آزاد اسلامی، پرند،
2 - دانشیار گروه اقتصاد، دانشگاه آزاد اسلامی، واحد (خوراسگان)،
کلید واژه: نرخ ارز, شبکه عصبی مصنوعی, الگوریتم ژنتیک, الگوریتم ذرات انبوه, ,
چکیده مقاله :
در سالهای اخیر بکارگیری روش های هوش مصنوعی در بازارهای مالی و سرمایه گذاری به جای روش های کمی مرسوم، رو به افزایش بوده و معمولا عملکرد بهتری را نسبت به روشهای کلاسیک ارائه کرده است. شبکه عصبی مصنوعی علیرغم مزایای فراوان دارای نقاط ضعف نیز می باشند. در این پژوهش به منظور غلبه بر نقاط ضعف روش شبکه عصبی با آموزش دادههای شبکه عصبی از طریق الگوریتم تکاملی یعنی از ترکیب شبکه عصبی مصنوعی با الگوریتم ژنتیک (GA) و الگوریتم ذرات انبوه (PSO) جهت مدلسازی و پیش بینی روزانه نرخ های ارز اسمی در ایران در دوره زمانی 01/01/1392 تا 01/10/1398 استفاده شده است. این مدلهای ترکیبی با روش شبکه عصبی به عنوان یکی از مدلهای هوش مصنوعی با توجه به معیارهای خطای MSE، RMSE، MAE،U.Theil مقایسه میگردد. نتایج این پژوهش نشان از برتری مدل ترکیبی شبکه عصبی الگوریتم ذرات انبوه نسبت به سایر مدل های مورد بررسی تحقیق دارد
In recent years the use of artificial intelligence techniques in the financial and investment markets instead of customary quantitative methods has been increasing and gives better performance towards classic methods usually. Artificial Neural Network (ANN), has weaknesses points despite its enormous benefits also. In this study, in order to overcome the weaknesses of the network consists of combining artificial intelligence methods with Evolutionary algorithms, means of artificial neural network combined with genetic algorithm (GA) and Particle Swarm algorithm (PSO) to model and daily predict of nominal exchange rates or the exchange rate dollar by Rial in Iran in the period 21.03.2013 to 22.12.2019 is used. This combined model with neural networks method as one artificial intelligence model according to the criteria of MSE , RMSE, MAE, U.Theil compared. The results of this research show the superiority of synthetic neural network model -Particle Swarm algorithm compare to other models of investigation.