The Study of Antioxidant and Cellular Toxicity Effects of Methanol, Ethyl Acetate, Aqueous and n-Hexane Extracts of Symphytum Kurdicum Plant
Subject Areas : Journal of Chemical Health RisksShiva Khalil_moghaddam 1 * , Atousa Aliahmadi 2 , Nastaran Jalilian 3 , Mohamad Aref Tabad 4
1 - Department of Biology,Yadegar - e- Imam Khomeini (RAH) shahr-e-Rey Branch, Islamic Azad University,Tehran,Iran
2 - Department of Biology, Medicinal Plants and Drug Research Institute, Shahid Beheshti University,Tehran,Iran
3 - Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, (AREEO), Kermanshah,Iran
4 - M. Sc. Graduate of Medicinal plants, Department of Medicinal Plants, ACECR Institute of Higher Education, Kermanshah,Iran
Keywords: Antioxidant, Oxidative stress, Cell toxicity, Symphytum kurdicum,
Abstract :
This study was aimed to investigating the antioxidant and cellular toxicity of Symphytum kurdicum. The methanolic extracts of the aerial parts of the plant were prepared through soaking and non-polar to polar cutting of the extract by the liquid-liquid cutting method. The antioxidant effect of the samples was specified by the methods of determining the free radical scanenging 2, 2-diphenyl-1-picrylhydrazyl(DPPH), ferric reducing ability of plasma (FRAP) and the total phenolic content by folin ciocalteu method. Cellular toxicity of the samples on peripheral blood mononuclear cells (PBMC) was performed by 3-(4,5-dimethylthiazol-2-yl) and 2, 5-diphenyltetrazolium bromide (MTT). The results indicated that ethyl acetate and aqueous fractions with IC50 equal to 33.67 and 29.43 μg/ml, respectively, showed the highest ability in DPPH free radicals Scavenging. Moreover, in the study of ferric iron regeneration, the ethyl acetate fraction with a capability of 280.985± 14.007 mM/mg dry weight of sample showed the best regenerative effect against trolox control. The aqueous and ethyl acetate fractions had the highest total phenolic content with 150.765 ± 0.035 and 130.570 ± 0.056 (Gallic acid milligrams/ gram dry weight of sample), respectively. The results of MTT test revealed that all fractions at a concentration much higher than the effective antioxidant concentrations lacked cellular toxicity, too. Given the role of oxidative stress as a predisposing factor in diseases like diabetes, cancer, and cardiovascular disease, aqueous and ethyl acetate fractions are likely to be introduced as pharmacological supplements.
1. Jagessar R.C., 2019. Review Article Antioxidant Properties of Plant Extracts. Edelweiss Pharma Analytic Acta. 1(1), 18–21.
2. Harrison D., Griendling K.K., Landmesser U., Hornig B., Drexler H., 2003. Role of oxidative stress in atherosclerosis. Am J Cardiol. 50, 402-409.
3. Singh U., Jialal I., 2006. Oxidative stress and atherosclerosis. Pathophysiology. 13(3), 129-142.
4. Karadag A., Ozcelik B., Saner S., 2009. Review of methods to determine antioxidant capacities. Food Anal. Methods. 2(1), 41–60.
5. Giacco F., Brownlee M., 2010. Oxidative stress and diabetic complications. Circ Res. 107(9), 1070-1058.
6. Rajendiran D., Packirisamy S., Gunasekaran K., 2017. A review on role of antioxidants in diabetes. Asian J Pharm Clin Res, 11( 2), 48-53.
7. Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160(1), 1-40.
8. Matés J.M., Pérez-Gómez C., De Castro I.N., 1999. Antioxidant enzymes and human diseases. Clin Biochem. 32(8), 595-603.
9. Sadeghi N., Tavalaee M., Nasr- Esfahani M.H., 2018. A Cellular Perspective on the Importance of Oxidative Stress Effects on Sperm. J Ardabil Univ Med Sci. 18(1), 7–20.
10. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L., 2004. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 79(5), 727-747.
11. Mekinić I.G., Skroza D., Ljubenkov I., Katalinić V., Šimat V., 2019. Antioxidant and antimicrobial potential of phenolic metabolites from traditionally used Mediterranean herbs and spices. Foods. 8(11), 579.
12. Saeed N., Khan M.R., Shabbir M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complem Altern M. 12(1), 221.
13. Santos-Sanchez N.F., Salas-Coronado R., Valadez-Blanco R., Hernández-Carlos B., Guadarrama-Mendoza P.C., 2017. Natural antioxidant extract as food preservatives. Acta Sci. Pol. Technol. Aliment. 16(4), 361–370.
14. Khatamsaz M., Assadi M., Maassoumi A.A., 2002. Boraginaceae, Flora of Iran 39, Research Institute of Forests and Rangelands, Tehran, 217-221.
15. Baba S., Malik S., 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume . J Taibah Univ Sci. 9(4), 449–54.
16. Badei A., Morsi H., El-Akel A., 1991. Chemical composition and antioxidant properties of cardamom essential oil. Bull Fac Agric Univ Cairo. 42(1), 199–215.
17. Dastan D., Aliahmadi A., 2015. Antioxidant and antibacterial studies on different extracts of Ornithogalum cuspidatum Bertol from Iran. Biol Forum: an International Journal. 7(2), 1072–5.
18. Moghaddam S., Shahvelayati A., Aliahmadi A., 2020. Synthesis and Antioxidant Properties of Two New Derivatives of Indeno-Benzofuran. J Chemical Health Risks.10, 75–80.
19. Benzie I., Strain J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power. The FRAP assay. Anal Biochem. 239(1), 70-6.
20.Kawakami Y., Tsukimoto M., Kuwabara K., Fujita T., 2011 Neopterin May Enhance TNF-a-mediated Mononuclear Cell Death in the Cerebrospinal Fluid of Patients with Bacterial Meningitis. Pteridines. 22(1), 91-96.
21. Riss T., Moravec R., Niles A., Benink H., Worzella T., Minor L., 2016. Cell Viability Assays. (Md)1–25.
22. Soobrattee M., Neergheen V., Luximon-Ramma A., Aruoma O., Bahorun T., 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat Res Mol Mech M. 579(1), 200–13.
23. Saeed N., Khan M., Shabbir M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med.12(1), 221.
24. Mohan Adai A,. 2017. Chemotaxonomical Study of the Genera Brunnera (Schenk) Jonston,Choriantha H.Rirdel., Cynoglossum Mill., Solenanthus Ledeb. & Symphytum (Boiss.) L. (Boraginaceae) in Kurdistan region of Iraq by using High Performance Liquid Chromatography (HPLC). Diyala J Pure Sci,13(3), 88–103.
25. Adomako-Bonsu A., Chan S., Pratten M., Fry J., 2017. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems. Importance of physico-chemical characteristics. Toxicol Vitr. 40, 248–55.
26. Amoah S., Sandjo L., Kratz J., Biavatti M., 2016. Rosmarinic acid - pharmaceutical and clinical aspects. Planta Med. 82(5), 388–406.
27. Sowa I., Paduch R., Strzemski M., Zielińska S., Rydzik-Strzemska E., Sawicki J., kocjan R., Polkowsli J., Matkowski A., Latalski M., Wojciak-Kosior M., 2018. Proliferative and antioxidant activity of Symphytum officinale root extract. Nat Prod Res. 32(5), 605–9.
28. Neagu E., Roman G., Radu G., 2010. Antioxidant capacity of some Symphytum officinalis extracts processed by ultrafiltration. Rom Biotechnol Lett. 15(4), 5505–11.
29. Alkan F., Anlas C., Ustuner O., Bakırel T., Sari A., 2014. Antioxidant and proliferative effects of aqueous and ethanolic extracts of Symphytum officinale on 3T3 Swiss albino mouse fibroblast cell line. Asian J Plant Sci Res. 4(4), 62–8.
29. Neagu E., Roman G., Radu G., 2010. Antioxidant capacity of some Symphytum officinalis extracts processed by ultrafiltration. Rom Biotechnol Lett. 15(4), 5505–11.
30. Staiger C., 2012. Comfrey: A clinical overview. Phyther Res. 26(10), 1441–8.
31. Loots J., Loots G., Joubert W.,1979. The effect of allantoin on cellular multiplication in degenerating and regenerating nerves. South Afr. Med J. 55(2), 53–6.