The Investigation of the Interaction between Lomefloxacin and Human Serume Albumin by Specteroscopic Methods
Subject Areas : Journal of Chemical Health RisksF. S. Goldouzian 1 , Z. S. Goldouzian 2 , M. Momen Heravi 3 , J. Khanchamani 4
1 - Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
3 - Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
4 - Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Keywords: Human serum albumin, Lomefloxacin, Fluorescence spectroscopy, Fluorophore, Fluoroquinolone,
Abstract :
Mechanism of the binding of lomefloxacin (LMF) with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. LMF is a third-generation fluoroquinolone antibiotic that exhibits striking potency against a broad spectrum of Gram-negative and Gram-positive bacteria through inhibition of DNA gyrase. Lomefloxacin is a drug that is excreted in urine and has very variable systemic absorption. Human serum albumin (HSA) is the most important and abundant constituent of blood plasma and serves as a protein storage component. Recently, the three-dimensional structure of HSA was determined through X-ray crystallographic measurement. Fluorescence studies showed that (LMF) has an ability to quench the intrinsic fluorescence of HSA through a static quenching procedure according to the Stern–Volmer equation .LMF showed two types of binding sites, the first having a very high affinity (1/72 ×107M-1) and a secondary binding site with an affinity two orders lower than the primary site. The number of binding sites for complex: HSA-LMF at 280 nm was calculated 1and0.5. The microenvironment of tryptophan and tyrosin residues and more hydrophobic of fluorophores microenvironment were changed and disturbed by the blue shift in maximum wavelength and decreased in fluorescence intensity in the presence of lomefloxacin revealed decreased polarity of the fluorophores. The binding site for LMF is in a hydrophobic pocket in the sub-domain II A of HSA.
- American Society of Microbiology, Washington,
- DC, USA, 1993:1-11.
- Dufour C. and O. Dangles, 2005. Flavonoid-serum
- albumin complexation: determination of
- binding complexation: determination of binding
- constants and binding sites by fluorescence
- spectroscopy," Biochim. Biophys. Acta 1721,
- -173.
- Quan J., F. Jin, T. Sun and X. Zhou, 2007. "Multispectroscopic
- study on interaction of bovine
- serum albumin with lomefloxacin âââ copper (II)
- Complex" International Journal of Biological
- Macromolecules, 40, 299-304.
- Tang J., N. Lian, X. He and G. Zhang, 2008.
- "Investigation of the interaction between
- sophoricoside and human serum albumin by
- optical spectroscopy and molecular modeling
- methods, "J. Mol. Struct. 889 , 408-41.
- Xie M. X., M. Long and Y. liu, 2006.
- Characterization of the interaction between
- human serum albumin and morinââÅ Biochim.
- Biophys. Acta.1760, 1184-1191
- Yue Y., Y. Zhang, J. Qin and X. Chen, 2008.
- "Study of the interaction between esculetin and
- human serum albumin by multi-spectroscopic
- method and molecular modeling," J. Mol.
- Struct. 888, 25-32.
- Zhang G., Q. Que, J. Pan and J. Guo, 2008. "Study
- of the interaction between icariin and human
- serum albumin by fluorescence spectroscopy,"
- J. Mol. Struct., 881, 132-138