تأثیر محلولپاشی سیتوکینین بر صفات مورفولوژیکی و عملکرد ارقام کینوا (Chenopodium quinoa Willd.) تحت شرایط آبیاری مطلوب و تنش خشکی
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیهادی سالک معراجی 1 , افشین توکلی 2 , نیازعلی سپهوند 3
1 - دانشجوی دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
2 - دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.
3 - استادیار مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، کرج، ایران.
کلید واژه: عملکرد دانه, رقم, تنش, بنزیلآمینو پورین, Chenopodium quinoa,
چکیده مقاله :
خشکی به عنوان مهم ترین تنش غیرزنده می تواند رشد و نمو و عملکرد گیاهان را کاهش دهد. کینوا گیاهی با ارزش غذایی بالا و متحمل به خشکی است. به منظور بررسی اثر محلول پاشی سیتوکینین بر خصوصیات مورفولوژیکی و عملکرد ارقام کینوا، آزمایشی در سال زراعی 1396 به صورت طرح اسپلیت فاکتوریل در قالب بلوک های کامل تصادفی با چهار تکرار در مزرعه پژوهشی دانشکده کشاورزی دانشگاه زنجان اجرا گردید. تیمارهای آزمایش شامل دو سطح آبیاری (آبیاری مطلوب (4/0- مگاپاسکال) و تنش خشکی (5/1- مگاپاسکال)) به عنوان فاکتور اصلی و فاکتورهای فرعی شامل چهار رقم کینوا (Q 26، Q 29، Giza 1 و Red Carina) و محلول پاشی با هورمون سیتوکینین در سه سطح (صفر، 50 و 100 میکرومولار) بودند. تیمار آبیاری و رقم در این بررسی بر تمام صفات مورد ارزیابی اثر معنی داری داشتند. محلول پاشی با سیتوکینین بر تمام صفات مورد ارزیابی، به غیر از طول خوشه اصلی و شاخص سبزینگی، اثر معنی داری داشت. بیشترین و کمترین عملکرد دانه با 7/2364 و 8/1701 کیلوگرم در هکتار، به ترتیب در شرایط آبیاری مطلوب و تنش خشکی به دست آمدند. تنش خشکی سبب کاهش 28 درصدی عملکرد دانه گردید. بالاترین عملکرد دانه در رقم Giza 1 (6/2746 کیلوگرم در هکتار) وRed Carina (7/2589 کیلوگرم در هکتار) با کاربرد 100 میکرومولار سیتوکینین حاصل گردید. محلـول پاشی سیتوکینین بر عملکرد دانه ارقام Q 26 و Q 29 اثر معنی داری نداشت. با توجه به نتایج به دست آمده می توان رقم Giza 1 را به عنوان رقمی مناسب جهت کشت در شرایط مطلوب و تنش خشکی مورد توجه قرار داد.
Drought is the most important non-biotic stress which decreases growth and the yield of crop plants. Quinoa is a plant with high nutritional value and drought tolerant. To evaluate the effect of cytokinin foliar application on morphological traits and yield of quinoa cultivars, a split factorial experiment based on randomized complete block design was conducted during during 2017 cropping season with four replications at the research farm of Agriculture Faculty, the University of Zanjan. Experimental treatments were levels of irrigation (optimal irrigation, with -0.4 MPa and drought stress with -1.5 MPa) as main factor and sub factors were four quinoa cultivars (Q 26, Q 29, Giza1 and Red Carina) and foliar cytokinin with three levels (0, 50 and 100 μM). Irrigation and cultivar treatment had significant effect on all evaluated traits. Foliar application with cytokinin had significant effect on all traits except length of main ear and greeness index (SPAD). The maximum and minimum of grain yield 2364.7 and 1701.8 kg.ha-1, obtained under optimal irrigation and drought stress conditions, respectively. Drought stress reduced seed yield by 28 percent. The highest yields obtained by Giza 1 (2746.7 kg.ha-1) and Red Carina (2589.7 kg.ha-1) with the application 100 µm of cytokinin. The foliar application of cytokinin did not affect seed yields of Q 26 and Q 29 cultivars significantly. According to the results, Giza 1 can be recommended as a suitable cultivar under both optimum and drought stress conditions at the experimental site.
· Ainsworth, E.A., S.P. Serbin, J.A. Skoneczka, and P.A. Townsend. 2014. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynthesis Research. 119: 65–76.
· Akter, N., M.R. Islam, M.A. Karim, and T. Hossain. 2014. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology. 17(1): 41-48.
· Ali, Z., S.M.A. Basra, H. Munir, A. Mahmood, and S. Yousaf. 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. Journal of Agriculture, Forestry and the Social Sciences. 7(2): 56-62.
· Alizadeh, A. 2015. Irrigation systems design. (38 Edition Revised), Imam Reza University Publication. 452 pages. (In Persian).
· Anithakumari, A.M., K.N. Nataraja, R.G. Visser, and C.G. van der Linden. 2012. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding. 30: 1413–1429.
· Anjum, S.A., X.Y. Xie, L.C. Wang, M.F. Saleem, C. Man, and W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032.
· Anonymus. 2012. FAO, WFP and IFAD. The State of Food Insecurity in the World. 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome.
· Arbona, V., M. Manzi, C. Ollas, and A. Gómez-Cadenas. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences. 14(3): 4885-4911.
· Argueso, C.T., F.J. Ferreira, and J.J. Kieber. 2009. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell and Environment. 32(9): 1147-1160.
· Arunyanark, A., S. Jogloy, C. Akkasaeng, N. Vorasoot, T. Kesmala, R.C. Nageswara Rao, G.C. Wright, and A. Patanothai. 2008. Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science. 194(2): 113-125.
· Arunyanark, A., S. Jogloy, N. Vorasoot, C. Akkasaeng, T. Kesmala, and A. Patanothai. 2009. Chlorophyll meter readings in peanut across different drought stress conditions. Asian Journal of Plant Sciences. 8(2): 102-110.
· Azizi, P., M.Y. Rafii, M. Maziah, S.N.A. Abdullah, M.M. Hanafi, M.A. Latif, A.A. Rashid, and M. Sahebi. 2015. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development. 135: 1-15.
· Bartrina, I., E. Otto, M. Strnad, T. Werner, and T. Schmülling. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell. 23(1): 69-80.
· Bhargava, S., and K. Sawant. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding. 132 (1): 21-32.
· Brenner, W.G., E. Ramireddy, A. Heyl, and T. Schmülling. 2012. Gene regulation by cytokinin in Arabidopsis. Frontiers in Plant Science. 3 (8): 1-22.
· Cabello, R., P. Monneveux, F. De Mendiburu, and M. Bonierbale. 2013. Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica. 193: 147–156.
· Daryanto, S., L.X. Wang, and P.A. Jacinthe. 2016. Global synthesis of drought effects on maize and wheat production. PLoS ONE. 11(5): 1-15.
· Dawood, M.G. 2018. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal. 19(5): 245-254.
· Ding, Y., Y. Tao, and C. Zhu. 2013. Emerging roles of micro RNAs in the mediation of drought stress response in plants. Journal of Experimental Botany. 64(11): 3077-3086.
· Doustipour, S., M. Barmaki, D. Hassanpanah, and S. Khomari. 2016. Study the effects of synthetic cytokinin on growth and yield of potato cultivares. M.Sc. Dissertation, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran. (In Persian).
· Elewa, T.A., M.S. Sadak, and A.M. Saad. 2017. Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research. 14(1): 21-33.
· Fahad, S., S. Hussain, A. Bano, S. Saud, S. Hassan, D. Shan, F.A. Khan, F. Khan, Y. Chen, C. Wu, and M.A. Tabassum. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research. 22(7): 4907-4921.
· Farooq M., M. Hussain, A. Wahid, and K. Siddique. 2012. Drought stress in plants: an overview. In plant responses to drought stress. Edited by Aroco R. Springer-Verlag: Berlin, Germany, 1-33.
· Farooq, M., A. Wahid, N. Kobayashi, D.B.M.A. Fujita, and S.M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture. 29(1): 185-212.
· Fiorani, F., and U. Schurr. 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology. 64: 267–291.
· Gholizadeh, A., M. Saberioon, L. Borůvka, A. Wayayok, and M.A.M. Soom. 2017. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture. 4(4): 259-268.
· González, J.A., M. Gallardo, M.B. Hilal, M.D. Rosa, and F.E. Prado. 2009. Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies. 50(1): 35–42.
· Gordon, S.P., V.S. Chickarmane, C. Ohno, and E.M. Meyerowitz. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences. 106(38): 16529-16534.
· Hossain, M.A., S.H. Wani, S. Bhattacharjee, D.J. Burritt, and L.S.P. Tran. 2016. Drought stress tolerance in plants, Volume 1: Physiology and Biochemistry. Springer.
· Hussein, Y., G. Amin, A. Azab, and H. Gahin. 2015. Induction of drought stress resistance in sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Journal of Plant Sciences. 10(4): 128-141.
· Jacobsen, S.E., F. Liu, and C.R. Jensen. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae. 122(2): 281-287.
· Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International of Journal Agriculture and Biology. 11(1): 100-105.
· Kang, N.Y., C. Cho, N.Y. Kim, and J. Kim. 2012. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology. 169(14): 1382-1391.
· Kazan, K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science. 20(4): 219-229.
· Kilic, H., and T. Yağbasanlar. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 38(1): 164-170.
· Mafakheri, A., A.F. Siosemardeh, B. Bahramnejad, P.C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 4(8): 580-585.
· Mahrokh, A., M. Nabipour, H. Roshanfekr, and R. Choukan. 2019. Response of some grain maize physiological parameters to drought stress and application of auxin and cytokinin hormones. Environmental Stresses in Crop Sciences. 12(1):1-15. (In Persian).
· Marsch-Martinez, N., D. Ramos-Cruz, J. Irepan Reyes-Olalde, P. Lozano-Sotomayor, V.M. Zuniga-Mayo, and S. De Folter. 2012. Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal. 72(2): 222-234.
· Mehraban, A., and H. Ghanjali. 2014. Effect of water stress and spraying cytokinin hormone on hamoon wheat variety in sistan region. Indian Journal of Fundamental and Applied Life Sciences. 4: 814-818.
· Mishra, A.K., and V.P. Singh. 2011. Drought modeling–A review. Journal of Hydrology. 403(1-2): 157-175.
· Nagar, S., S. Ramakrishnan, V.P. Singh, C.P. Singh, R. Dhakar, D.K. Umesh, and A. Arora. 2015. Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment. Indian Journal of Plant Physiology. 20(1): 31-38.
· Nezami, A., H.R. Khazaei, R.Z. Boroumand, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. DESERT. 12: 99-104.
· Nezhadahmadi, A., Z.H. Prodhan, and G. Faruq. 2013. Drought tolerance in wheat. The Scientific World Journal. 13:1-12.
· Nishiyama, R., Y. Watanabe, Y. Fujita, D.T. Le, M. Kojima, T. Werner, R. Vankova, K. Yamaguchi-Shinozaki, K. Shinozaki, T. Kakimoto, and H. Sakakibara. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell. 23(6): 2169-2183.
· O'Brien, J.A., and E. Benková. 2013. Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 4: 1-14.
· Opabode, J.T., and S. Owojori. 2018. Response of African eggplant (Solanum macrocarpon L.) to foliar application of 6-benzylaminopurine and gibberellic acid. Journal of Horticultural Research. 26(2): 37-45.
· Raza, M.A.S., M.S. Zaheer, M.F. Saleem, H. Khan, F. Khalid, M.U. Bashir, M. Awais, R. Iqbal, S. Ahmad, M.U. Aslam, and I. Haider. 2017. Investigating drought tolerance potential of different wheat (Triticum aestivum L.) varieties under reduced irrigation level. International Journal of Biosciences. 11: 257-265.
· Reyes-Olalde, J.I., V.M. Zúñiga-Mayo, J. Serwatowska, R.A.C. Montes, P. Lozano-Sotomayor, H. Herrera-Ubaldo, K.L. Gonzalez-Aguilera, P. Ballester, J.J. Ripoll, I. Ezquer, and D. Paolo. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics. 13(4): 1-14.
· Salehi-Lisar, S.Y., and H. Bakhshayeshan-Agdam. 2016. Drought stress in plants: causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Springer, Cham. 1: 1-16.
· Sikuku, P.A., G.W. Netondo, D.M. Musyimi, and J.C. Onyango. 2010. Effects of water deficit on days to maturity and yield of three NERICA rainfed rice varieties. ARPN Journal of Agricultural and Biological Science. 5(3): 1-9.
· Stikić, R., Z. Jovanović, M. Marjanović, and S. Đorđević. 2015. The effect of drought on water regime and growth of quinoa (Chenopodium quinoa Willd.). Ratarstvo i Povrtarstvo. 52(2): 80-84.
· Sun, Y., F. Liu, M. Bendevis, S. Shabala, and S.E. Jacobsen. 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science. 200(1): 12-23.
· Telahigue, D.C., L.B. Yahia, F. Aljane, K. Belhouchett, and L. Toumi. 2017. Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. Journal of Scientific Agriculture. 1: 222-232.
· Valiyari, M., and H. Nourafcan. 2018. Effect of IAA and BAP on morphophysiological traits of lemon balm. Agroecology Journal. 13(4): 23-32. (In Persian).
· Vega-Galvez, A., M. Miranda, J. Vergara, E. Uribe, L. Puente, and E.A. Martinez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture. 90(15): 2541-2547.
· Wani, S.H., and S.K. Sah. 2014. Biotechnology and abiotic stress tolerance in rice. Journal of Rice Research. 2(2): 1-2.
· Yang, A., S.S. Akhtar, M. Amjad, S. Iqbal, and S.E. Jacobsen. 2016. Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science. 202(6): 445-453.
· Zaheer, M.S., M.A.S. Raza, M.F. Saleem, K.O. Erinle, R. Iqbal, and S. Ahmad. 2019. Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis. 50(20): 2521-2533.
Zlatev, Z., and F.C. Lidon. 2012. An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emirates Journal of Food and Agriculture. 24(1): 57-72.
· Ainsworth, E.A., S.P. Serbin, J.A. Skoneczka, and P.A. Townsend. 2014. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynthesis Research. 119: 65–76.
· Akter, N., M.R. Islam, M.A. Karim, and T. Hossain. 2014. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology. 17(1): 41-48.
· Ali, Z., S.M.A. Basra, H. Munir, A. Mahmood, and S. Yousaf. 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. Journal of Agriculture, Forestry and the Social Sciences. 7(2): 56-62.
· Alizadeh, A. 2015. Irrigation systems design. (38 Edition Revised), Imam Reza University Publication. 452 pages. (In Persian).
· Anithakumari, A.M., K.N. Nataraja, R.G. Visser, and C.G. van der Linden. 2012. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding. 30: 1413–1429.
· Anjum, S.A., X.Y. Xie, L.C. Wang, M.F. Saleem, C. Man, and W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032.
· Anonymus. 2012. FAO, WFP and IFAD. The State of Food Insecurity in the World. 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome.
· Arbona, V., M. Manzi, C. Ollas, and A. Gómez-Cadenas. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences. 14(3): 4885-4911.
· Argueso, C.T., F.J. Ferreira, and J.J. Kieber. 2009. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell and Environment. 32(9): 1147-1160.
· Arunyanark, A., S. Jogloy, C. Akkasaeng, N. Vorasoot, T. Kesmala, R.C. Nageswara Rao, G.C. Wright, and A. Patanothai. 2008. Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science. 194(2): 113-125.
· Arunyanark, A., S. Jogloy, N. Vorasoot, C. Akkasaeng, T. Kesmala, and A. Patanothai. 2009. Chlorophyll meter readings in peanut across different drought stress conditions. Asian Journal of Plant Sciences. 8(2): 102-110.
· Azizi, P., M.Y. Rafii, M. Maziah, S.N.A. Abdullah, M.M. Hanafi, M.A. Latif, A.A. Rashid, and M. Sahebi. 2015. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development. 135: 1-15.
· Bartrina, I., E. Otto, M. Strnad, T. Werner, and T. Schmülling. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell. 23(1): 69-80.
· Bhargava, S., and K. Sawant. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding. 132 (1): 21-32.
· Brenner, W.G., E. Ramireddy, A. Heyl, and T. Schmülling. 2012. Gene regulation by cytokinin in Arabidopsis. Frontiers in Plant Science. 3 (8): 1-22.
· Cabello, R., P. Monneveux, F. De Mendiburu, and M. Bonierbale. 2013. Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica. 193: 147–156.
· Daryanto, S., L.X. Wang, and P.A. Jacinthe. 2016. Global synthesis of drought effects on maize and wheat production. PLoS ONE. 11(5): 1-15.
· Dawood, M.G. 2018. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal. 19(5): 245-254.
· Ding, Y., Y. Tao, and C. Zhu. 2013. Emerging roles of micro RNAs in the mediation of drought stress response in plants. Journal of Experimental Botany. 64(11): 3077-3086.
· Doustipour, S., M. Barmaki, D. Hassanpanah, and S. Khomari. 2016. Study the effects of synthetic cytokinin on growth and yield of potato cultivares. M.Sc. Dissertation, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran. (In Persian).
· Elewa, T.A., M.S. Sadak, and A.M. Saad. 2017. Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research. 14(1): 21-33.
· Fahad, S., S. Hussain, A. Bano, S. Saud, S. Hassan, D. Shan, F.A. Khan, F. Khan, Y. Chen, C. Wu, and M.A. Tabassum. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research. 22(7): 4907-4921.
· Farooq M., M. Hussain, A. Wahid, and K. Siddique. 2012. Drought stress in plants: an overview. In plant responses to drought stress. Edited by Aroco R. Springer-Verlag: Berlin, Germany, 1-33.
· Farooq, M., A. Wahid, N. Kobayashi, D.B.M.A. Fujita, and S.M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture. 29(1): 185-212.
· Fiorani, F., and U. Schurr. 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology. 64: 267–291.
· Gholizadeh, A., M. Saberioon, L. Borůvka, A. Wayayok, and M.A.M. Soom. 2017. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture. 4(4): 259-268.
· González, J.A., M. Gallardo, M.B. Hilal, M.D. Rosa, and F.E. Prado. 2009. Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies. 50(1): 35–42.
· Gordon, S.P., V.S. Chickarmane, C. Ohno, and E.M. Meyerowitz. 2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences. 106(38): 16529-16534.
· Hossain, M.A., S.H. Wani, S. Bhattacharjee, D.J. Burritt, and L.S.P. Tran. 2016. Drought stress tolerance in plants, Volume 1: Physiology and Biochemistry. Springer.
· Hussein, Y., G. Amin, A. Azab, and H. Gahin. 2015. Induction of drought stress resistance in sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Journal of Plant Sciences. 10(4): 128-141.
· Jacobsen, S.E., F. Liu, and C.R. Jensen. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae. 122(2): 281-287.
· Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H. Al-Juburi, R. Somasundaram, and R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International of Journal Agriculture and Biology. 11(1): 100-105.
· Kang, N.Y., C. Cho, N.Y. Kim, and J. Kim. 2012. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. Journal of Plant Physiology. 169(14): 1382-1391.
· Kazan, K. 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science. 20(4): 219-229.
· Kilic, H., and T. Yağbasanlar. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 38(1): 164-170.
· Mafakheri, A., A.F. Siosemardeh, B. Bahramnejad, P.C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 4(8): 580-585.
· Mahrokh, A., M. Nabipour, H. Roshanfekr, and R. Choukan. 2019. Response of some grain maize physiological parameters to drought stress and application of auxin and cytokinin hormones. Environmental Stresses in Crop Sciences. 12(1):1-15. (In Persian).
· Marsch-Martinez, N., D. Ramos-Cruz, J. Irepan Reyes-Olalde, P. Lozano-Sotomayor, V.M. Zuniga-Mayo, and S. De Folter. 2012. Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal. 72(2): 222-234.
· Mehraban, A., and H. Ghanjali. 2014. Effect of water stress and spraying cytokinin hormone on hamoon wheat variety in sistan region. Indian Journal of Fundamental and Applied Life Sciences. 4: 814-818.
· Mishra, A.K., and V.P. Singh. 2011. Drought modeling–A review. Journal of Hydrology. 403(1-2): 157-175.
· Nagar, S., S. Ramakrishnan, V.P. Singh, C.P. Singh, R. Dhakar, D.K. Umesh, and A. Arora. 2015. Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment. Indian Journal of Plant Physiology. 20(1): 31-38.
· Nezami, A., H.R. Khazaei, R.Z. Boroumand, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. DESERT. 12: 99-104.
· Nezhadahmadi, A., Z.H. Prodhan, and G. Faruq. 2013. Drought tolerance in wheat. The Scientific World Journal. 13:1-12.
· Nishiyama, R., Y. Watanabe, Y. Fujita, D.T. Le, M. Kojima, T. Werner, R. Vankova, K. Yamaguchi-Shinozaki, K. Shinozaki, T. Kakimoto, and H. Sakakibara. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell. 23(6): 2169-2183.
· O'Brien, J.A., and E. Benková. 2013. Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 4: 1-14.
· Opabode, J.T., and S. Owojori. 2018. Response of African eggplant (Solanum macrocarpon L.) to foliar application of 6-benzylaminopurine and gibberellic acid. Journal of Horticultural Research. 26(2): 37-45.
· Raza, M.A.S., M.S. Zaheer, M.F. Saleem, H. Khan, F. Khalid, M.U. Bashir, M. Awais, R. Iqbal, S. Ahmad, M.U. Aslam, and I. Haider. 2017. Investigating drought tolerance potential of different wheat (Triticum aestivum L.) varieties under reduced irrigation level. International Journal of Biosciences. 11: 257-265.
· Reyes-Olalde, J.I., V.M. Zúñiga-Mayo, J. Serwatowska, R.A.C. Montes, P. Lozano-Sotomayor, H. Herrera-Ubaldo, K.L. Gonzalez-Aguilera, P. Ballester, J.J. Ripoll, I. Ezquer, and D. Paolo. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics. 13(4): 1-14.
· Salehi-Lisar, S.Y., and H. Bakhshayeshan-Agdam. 2016. Drought stress in plants: causes, consequences, and tolerance. In Drought Stress Tolerance in Plants, Springer, Cham. 1: 1-16.
· Sikuku, P.A., G.W. Netondo, D.M. Musyimi, and J.C. Onyango. 2010. Effects of water deficit on days to maturity and yield of three NERICA rainfed rice varieties. ARPN Journal of Agricultural and Biological Science. 5(3): 1-9.
· Stikić, R., Z. Jovanović, M. Marjanović, and S. Đorđević. 2015. The effect of drought on water regime and growth of quinoa (Chenopodium quinoa Willd.). Ratarstvo i Povrtarstvo. 52(2): 80-84.
· Sun, Y., F. Liu, M. Bendevis, S. Shabala, and S.E. Jacobsen. 2014. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. Journal of Agronomy and Crop Science. 200(1): 12-23.
· Telahigue, D.C., L.B. Yahia, F. Aljane, K. Belhouchett, and L. Toumi. 2017. Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. Journal of Scientific Agriculture. 1: 222-232.
· Valiyari, M., and H. Nourafcan. 2018. Effect of IAA and BAP on morphophysiological traits of lemon balm. Agroecology Journal. 13(4): 23-32. (In Persian).
· Vega-Galvez, A., M. Miranda, J. Vergara, E. Uribe, L. Puente, and E.A. Martinez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture. 90(15): 2541-2547.
· Wani, S.H., and S.K. Sah. 2014. Biotechnology and abiotic stress tolerance in rice. Journal of Rice Research. 2(2): 1-2.
· Yang, A., S.S. Akhtar, M. Amjad, S. Iqbal, and S.E. Jacobsen. 2016. Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science. 202(6): 445-453.
· Zaheer, M.S., M.A.S. Raza, M.F. Saleem, K.O. Erinle, R. Iqbal, and S. Ahmad. 2019. Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis. 50(20): 2521-2533.
Zlatev, Z., and F.C. Lidon. 2012. An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emirates Journal of Food and Agriculture. 24(1): 57-72.