شبیهسازی تأثیر مدیریت آب آبیاری بر عملکرد، زیست توده و کارآیی مصرف آب گیاه کلزا (.Brassica napus L) با استفاده از مدل AquaCrop
محورهای موضوعی : اکوفیزیولوژی گیاهان زراعیافسانه غلامی 1 , اصلان اگدرنژاد 2 * , نیازعلی ابراهیمی پاک 3
1 - دانشجوی کارشناسی ارشد آبیاری و زهکشی، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - دانشیار، بخش آبیاری و فیزیک خاک، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی،کرج، ایران
کلید واژه: تنش آبی, کلزا, مدلسازی گیاهی, کمآبیاری,
چکیده مقاله :
پژوهش حاضر به منظور ارزیابی مدل گیاهی AquaCrop در شبیهسازی عملکرد، زیستتوده و کارآیی مصرف آب کلزا تحت مقادیر مختلف آبیاری (E1، E2، E3 و E4 به ترتیب نشان دهنده تأمین آب به میزان 50، 75، 100 و 125 میلیمتر از تشت تبخیر) در سه سال زرعی (Y1، Y2 و Y3 به ترتیب نشان دهنده سالهای اول، دوم و سوم) انجام شد. به منظور واسنجی این مدل از دادههای برداشت شده از سال اول زراعی و برای صحتسنجی مدل از دادههای سال دوم و سوم استفاده شد. نتایج نشان داد که مدل AquaCrop برای شبیهسازی هر سه پارامتر مورد مطالعه دچار خطای بیشبرآوردی شد (0>MBE). دقت این مدل برای شبیهسازی عملکرد و زیستتوده عالی (1/0< NRMSE) و برای شبیهسـازی کارآیی مصـرف آب خوب (0.2< NRMSE )< 0.1 ) بود. میانگین اختلاف بین عملکرد، زیستتوده و کارآیی مصرف آب شبیهسازی شده و مشاهداتی به ترتیب برابر با 0.19 تن در هکتار، 0.78 تن در هکتار و0.05 کیلوگرم بر مترمکعب بود. براساس این نتایج، استفاده از این مدل برای شبیهسازی عملکرد، زیست توده و کارآیی مصرف آب گیاه کلزا قابل پیشنهاد است.
The aims of this study is evaluate AquaCrop in simulating rapeseed yield, biomass and water use efficiency under different irrigation amounts (E1, E2, E3 and E4, indicating water supply of 50, 75, 100 and 125 mm from the evaporation pan, respectivly) was performed in three cropping years (Y1, Y2 and Y3 representing the first, second and third years, respectively). In order to calibrate this model, the data collected from the first year used for calibration and data for the second and third year were used for validation. The results showed that AquaCrop had an overestimated error (MBE< 0) to simulate all three parameters studied. The accuracy of AquaCrop was excellent for simulating yield and biomass (NRMSE <0.1) and good for water use efficiency (NRMSE <0.2). The mean differences between simulated and observed yield, biomass and water use efficiency water were 0.19 t.ha-1, 0.78 t.ha-1 and 0.05 kg.m-3, respectively. Based on the results, use of AquaCrop to simulate rapeseed yield, biomass and water use efficiency is recommended.
Adeboye, O.B., B. Schultz, K.O. Adekalu, and K.C. Parasad. 2019. Performance evaluation of AquaCrop in simulating soil water storage, yield, and water use efficiency of rainfed soybeans (Glycine max merr) in Ile-Ife, Nigeria. Agricultural Water Management. 213: 1130-1146. doi: 10.1016/j.agwat.2018. 11.006
Ahmadee, M., M. Ghanbarpouri, and A. Egdernezhad. 2021. Determining applied irrigation water of wheat using sensitivity analysis and evaluation of Aqua Crop. Water Management in Agriculture. 8(1): 15-30. doi: 20.1001.1.24764531.2021. 8.1.2.0. (In Persian).
Andarzian, B., M. Bannayan, P. Steduto, H. Mazraeh, M.E. Barati, and A. Rahnama. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. 100(1): 1-8. doi: 10.1016/j.agwat.2011.08.023
Ansari, M., A. Egdernezhad, and N. Ebrahimipak. 2019. Simulating of potato (Solanum tuberosum) yield under different irrigation conditions using AquaCrop and Cropsyst models. Journal of Crop Ecophysiology. 13(50): 287-304. doi: 10.30495/JCEP.2019.666253. (In Persian).
Araya, A., S. Habtu, K.M. Hadgu, A. Kebede, and T. Dejene. 2010. Test of AquaCrop model in simulating biomass and yield of water deficit and irrigated barely (Hordeum vulgare). Agricultural Water Management. 97(11):1838–1846. doi: 10.1016/j.agwat.2010.06.021
Arvaneh, H., and F. Abbasi. 2014. Calibration and validation of the AquaCrop model for canola in the field. Iranian Water Research Journal. 8(14): 9-17. (In Persian).
Chaganti, V.N., G. Ganjegunte, G. Niu, A. Ulery, J. M. Enciso, R. Flynn, N. Meki, and J. R. Kiniry. 2021. Yield response of canola as a biofuel feedstock and soil quality changes under treated urban wastewater irrigation and soil amendment application. Industrial Crops and Products. 170 (113659). doi: 10.1016/j.indcrop.2021.113659
Crous, I.R., J. Labuschangne, and P.A. Swanepoel. 2021. Nitrogen source effects on canola (Brassica napus ) grown under conservation agriculture in South Africa. Crop Sceince. 61(6): 4352-4364. doi:10.1002/csc2.20599
Ebrahimipak, N., A. Egdernezhad, A. Tafteh, and D. Khodadadi Dehkordi. 2019. Evaluation of AquaCrop model to simulate canola (Brassica napus) yield under deficit irrigation scenarios in Gazvin plain. Iranian Journal of Soil and Water Research. 49(5): 1003-1015. doi: 10.22059/IJSWR.2018.236158.667708. (In Persian).
Ebrahimipak, N., M. Ahmadee, A. Egdernezhad, and A. Khashei Siuki. 2018. Evaluation of AquaCrop to simulate saffron (Crocus sativus ) yield under different water management scenarios and zeolite amount. Journal of Water and Soil Resources Conservation. 8(1): 117-132. doi: 20.1001.1.22517480.1397. 8.1.8.5. (In Persian).
Egdernezhad, A., N.A. Ebrahimipak, A. Tafteh, and M. Ahmadee. 2019. Canola irrigation scheduling using AquaCrop model in Qazvin plain. Water Management in Agriculture. 5(2): 53-64. (In Persian).
Geerts, S., and D. Raes. 2009. Defecit irrigation as on-farm strategy to maximize crop water use efficiency in dry areas. Agricultural Water Management. 96(9): 1275-1284. doi: 10.1016/j.agwat.2009.04.009
Heng, L.K., T.C. Hsiao, S. Evett, T. Howell, and P. Steduto. 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal. 101(3):488-498. doi: 10.2134/agronj2008.0029xs
Katerji, N., P. Campi, and M. Mastrorilli. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management. 130: 14-26. doi: 10.1016/j.agwat.2013.08.005
Masanganise, J., K. Basira, B. Chipindu, E. Mashonjowa, and T. Mhizha. 2013. Testing the utility of a crop growth simulation model in predicting maize yield in a changing climate in Zimbabwe. International Journal of Agricultural and Food Science. 3(4): 157-163.
Mousavi, S.A.H., A. Egdernezhad, and A.A. Gilani. 2021. Yield and water productivity simulation of different rice cultivars under various planting methods using AquaCrop, CropSyst and WOFOST models. Journal of Crop Ecophysiology. 15(58): 221-228. (In Persian). doi: 10.30495/JCEP.2021.683383
Mousavizadeh, S.F., T. Honar, and S.H. Ahmadi. 2016. Assessment of the AquaCrop model for simulating canola under different irrigation management in a semiarid area. International Journal of Plant Production. 10(4): 425-445. doi: 10.22069/ IJPP.2016.3040
Raes, D., P. Steduto, T.C. Hsiao, and E. Freres. 2012. Refrence manual AquaCrop, FAO, land and water division, Rome Italy.
Rasooli, S.J., M.T. Naseri Yazdi, and R. Ghorbani. 2016. Determining prediction model of the canola (Brassica napus) yields based on agrometeorological and climatic parameters in Mashhad region of Iran. Journal of Water and Soil. 30(4): 1322-1333. (In Persian). doi: 10.22067/JSW.V30I4.45336
Stricevic, R., M. Cosic, N. Djurovic, B. Pejic, and L. Maksimovic. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize sugar beet and sunflower. Agricultural Water Management. 98(10): 1615-1621. doi: 10.1016/j.agwat.2011.05.011
Todorovic, M., R. Albrizio, L. Zivotic, M.T. Abi Saab, C. Stockle, and P. Steduto. 2009. Asswssment of AquaCrop, cropsyst, and wofost models in the simulation of sunflower growth under different water regimes. Agronomy Journal. 101(3): 509-521. doi: 10.2134/agronj2008.0166s
Zeleke, K.T., Luckett, and R. Cowley. 2011. Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal. 103(6): 1610-1618. doi: 10.2134/agronj2011.0150.
Zomorodian, A., Z. Kavoosi, and L. Momenzadeh. 2011. Determination of EMC isotherms and appropriate mathematical models for canola. Food and Bioproducts Processing. 89(4): 407-413. doi: 10.1016/j.fbp.2010.10.006
_||_Adeboye, O.B., B. Schultz, K.O. Adekalu, and K.C. Parasad. 2019. Performance evaluation of AquaCrop in simulating soil water storage, yield, and water use efficiency of rainfed soybeans (Glycine max merr) in Ile-Ife, Nigeria. Agricultural Water Management. 213: 1130-1146. doi: 10.1016/j.agwat.2018. 11.006
Ahmadee, M., M. Ghanbarpouri, and A. Egdernezhad. 2021. Determining applied irrigation water of wheat using sensitivity analysis and evaluation of Aqua Crop. Water Management in Agriculture. 8(1): 15-30. doi: 20.1001.1.24764531.2021. 8.1.2.0. (In Persian).
Andarzian, B., M. Bannayan, P. Steduto, H. Mazraeh, M.E. Barati, and A. Rahnama. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. 100(1): 1-8. doi: 10.1016/j.agwat.2011.08.023
Ansari, M., A. Egdernezhad, and N. Ebrahimipak. 2019. Simulating of potato (Solanum tuberosum) yield under different irrigation conditions using AquaCrop and Cropsyst models. Journal of Crop Ecophysiology. 13(50): 287-304. doi: 10.30495/JCEP.2019.666253. (In Persian).
Araya, A., S. Habtu, K.M. Hadgu, A. Kebede, and T. Dejene. 2010. Test of AquaCrop model in simulating biomass and yield of water deficit and irrigated barely (Hordeum vulgare). Agricultural Water Management. 97(11):1838–1846. doi: 10.1016/j.agwat.2010.06.021
Arvaneh, H., and F. Abbasi. 2014. Calibration and validation of the AquaCrop model for canola in the field. Iranian Water Research Journal. 8(14): 9-17. (In Persian).
Chaganti, V.N., G. Ganjegunte, G. Niu, A. Ulery, J. M. Enciso, R. Flynn, N. Meki, and J. R. Kiniry. 2021. Yield response of canola as a biofuel feedstock and soil quality changes under treated urban wastewater irrigation and soil amendment application. Industrial Crops and Products. 170 (113659). doi: 10.1016/j.indcrop.2021.113659
Crous, I.R., J. Labuschangne, and P.A. Swanepoel. 2021. Nitrogen source effects on canola (Brassica napus ) grown under conservation agriculture in South Africa. Crop Sceince. 61(6): 4352-4364. doi:10.1002/csc2.20599
Ebrahimipak, N., A. Egdernezhad, A. Tafteh, and D. Khodadadi Dehkordi. 2019. Evaluation of AquaCrop model to simulate canola (Brassica napus) yield under deficit irrigation scenarios in Gazvin plain. Iranian Journal of Soil and Water Research. 49(5): 1003-1015. doi: 10.22059/IJSWR.2018.236158.667708. (In Persian).
Ebrahimipak, N., M. Ahmadee, A. Egdernezhad, and A. Khashei Siuki. 2018. Evaluation of AquaCrop to simulate saffron (Crocus sativus ) yield under different water management scenarios and zeolite amount. Journal of Water and Soil Resources Conservation. 8(1): 117-132. doi: 20.1001.1.22517480.1397. 8.1.8.5. (In Persian).
Egdernezhad, A., N.A. Ebrahimipak, A. Tafteh, and M. Ahmadee. 2019. Canola irrigation scheduling using AquaCrop model in Qazvin plain. Water Management in Agriculture. 5(2): 53-64. (In Persian).
Geerts, S., and D. Raes. 2009. Defecit irrigation as on-farm strategy to maximize crop water use efficiency in dry areas. Agricultural Water Management. 96(9): 1275-1284. doi: 10.1016/j.agwat.2009.04.009
Heng, L.K., T.C. Hsiao, S. Evett, T. Howell, and P. Steduto. 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal. 101(3):488-498. doi: 10.2134/agronj2008.0029xs
Katerji, N., P. Campi, and M. Mastrorilli. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management. 130: 14-26. doi: 10.1016/j.agwat.2013.08.005
Masanganise, J., K. Basira, B. Chipindu, E. Mashonjowa, and T. Mhizha. 2013. Testing the utility of a crop growth simulation model in predicting maize yield in a changing climate in Zimbabwe. International Journal of Agricultural and Food Science. 3(4): 157-163.
Mousavi, S.A.H., A. Egdernezhad, and A.A. Gilani. 2021. Yield and water productivity simulation of different rice cultivars under various planting methods using AquaCrop, CropSyst and WOFOST models. Journal of Crop Ecophysiology. 15(58): 221-228. (In Persian). doi: 10.30495/JCEP.2021.683383
Mousavizadeh, S.F., T. Honar, and S.H. Ahmadi. 2016. Assessment of the AquaCrop model for simulating canola under different irrigation management in a semiarid area. International Journal of Plant Production. 10(4): 425-445. doi: 10.22069/ IJPP.2016.3040
Raes, D., P. Steduto, T.C. Hsiao, and E. Freres. 2012. Refrence manual AquaCrop, FAO, land and water division, Rome Italy.
Rasooli, S.J., M.T. Naseri Yazdi, and R. Ghorbani. 2016. Determining prediction model of the canola (Brassica napus) yields based on agrometeorological and climatic parameters in Mashhad region of Iran. Journal of Water and Soil. 30(4): 1322-1333. (In Persian). doi: 10.22067/JSW.V30I4.45336
Stricevic, R., M. Cosic, N. Djurovic, B. Pejic, and L. Maksimovic. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize sugar beet and sunflower. Agricultural Water Management. 98(10): 1615-1621. doi: 10.1016/j.agwat.2011.05.011
Todorovic, M., R. Albrizio, L. Zivotic, M.T. Abi Saab, C. Stockle, and P. Steduto. 2009. Asswssment of AquaCrop, cropsyst, and wofost models in the simulation of sunflower growth under different water regimes. Agronomy Journal. 101(3): 509-521. doi: 10.2134/agronj2008.0166s
Zeleke, K.T., Luckett, and R. Cowley. 2011. Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal. 103(6): 1610-1618. doi: 10.2134/agronj2011.0150.
Zomorodian, A., Z. Kavoosi, and L. Momenzadeh. 2011. Determination of EMC isotherms and appropriate mathematical models for canola. Food and Bioproducts Processing. 89(4): 407-413. doi: 10.1016/j.fbp.2010.10.006