بررسی عوامل موثر بر پذیرش بیمه آبوهوا محور توسط باغداران پرتقال شهرستان داراب
محورهای موضوعی :
فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزی
فاطمه علیجانی
1
*
,
شاهرخ شجری
2
,
آسیه منتظری
3
,
مهرداد باقری
4
1 - عضو هیات علمی دانشگاه پیانور
2 - دانشیار اقتصاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی
3 - دانشجوی اقتصاد کشاورزی، دانشگاه پیام نو تهران
4 - استادیار اقتصاد کشاورزی، دانشگاه پیام نور تهران
تاریخ دریافت : 1400/04/25
تاریخ پذیرش : 1402/07/25
تاریخ انتشار : 1402/11/01
کلید واژه:
شهرستان داراب,
آزمون انتخاب,
پرتقال,
بیمه آب و هوا محور,
چکیده مقاله :
مقدمه و هدف: بیمه کشاورزی یکی از مهمترین سازوکارهای ایجاد سرمایه گذاری و کاهش اثرات بلایای طبیعی است. یکی از انواع بیمه های مدرن بیمه مبتنی بر شاخص های آب هوایی است که بر اساس پارامترهای اقلیمی هر منطقه طراحی شده است.
مواد و روشها: در این تحقیق عوامل موثر بر پذیرش طرح بیمه شاخص آب و هوا محور پیشنهادی توسط باغداران شهرستان داراب با استفاده از مدل آزمون انتخاب بررسی شد. چهار ویژگی بیمه شاخص اآب و هوا محور شامل تعداد شاخص های اقلیمی تحت پوشش، نوع پرتقال، نحوه پرداخت و حق بیمه در هکتار بود.
یافتهها: در صورتی که طرح بیمه برای محصول والنسیا و پرداخت حق بیمه به صورت قسطی باشد، و از سوی دیگر اگر طرح شامل تعداد بیشتری شاخص آب و هوایی باشد، احتمال مشارکت باغداران بیشتر میشود. ویژگی تعداد شاخص (سه شاخص) و نوع پرتقال (والنسیا) به ترتیب با 93112 و 24425 تومان بیشترین تمایل به پرداخت را در میان ویژگیهای مختلف دارند.
بحث و نتیجهگیری: بر اساس نتایج، پیشنهاد می شود صندوق بیمه کشاورزی ضمن در نظر گرفتن ویژگی های مهم طرح بیمه شاخص اقلیم (تعداد شاخص ها، نحوه پرداخت و نوع پرتقال)، اطلاعات کاملی را در اختیار باغداران قرار دهد تا مشارکت باغداران در این طرح افزایش یابد.
. طبقه بندی JEL: .G22, C25
چکیده انگلیسی:
Introduction: Agricultural insurance, such as climate-based insurance, is one of the most important mechanisms for securing investment and reducing the effects of natural disasters.
Methods: The effective factors on the acceptance of the proposed climate index insurance plan by gardeners in Darab city were investigated using a Choice Experiment model with four characteristics of climate-based index insurance (the number of climate indicators covered type of orange, payment method and insurance premium per hectare).
Findings: If the insurance plan for Valencia Orange and insurance premiums is paid in installments, and on the other hand, if the insurance plan includes more climate indicators, gardeners are more likely to participate. Also, the number of indices (three indices) and the type of orange (Valencia) with 93112 and 24425 Tomans, respectively, have the highest willingness to pay among the various characteristics.
Conclusion: The Agricultural Insurance Fund, based on the important features of the Climate Index Insurance Plan, can provide complete information to gardeners to increase their participation in this plan.
منابع و مأخذ:
Adamowicz W, Boxall P, Williams M, Louviere J. Stated preference approaches for measuring passive use values: choice experiments and contingent valuation. American journal of agricultural economics. 1998; 80(1): 64-75. [https://doi.org/10.2307/3180269]
Afrasyabi S, Ghahremanzadeh M, Dashti G, Hussein Zad J. Factors affecting the participation of wheat farmers in the proposed weather index-based insurance in Ahar County. Journal of Agricultural Science and Sustainable Production. 2014; 23(4): 71-84. https://sustainagriculture.tabrizu.ac.ir/m/article_783.html?lang=en
Ali A. Farmers’ willingness to pay for index-based crop insurance in Pakistan: a case study on food and cash crops of rain-fed areas. Agricultural Economics Research Review. 2013; 26(2): 241-248. https://ageconsearch.umn.edu/record/162145/files/9-Akhter-Ali.pdf
Alpizar F, Carlsson F, Martinsson P. Using choice experiments for non-market valuation. Working papers in economics/Göteborg University, Dept. of Economics. 2001; No: 52 .https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/31484/118103.pdf?sequence=1
Ben-Akiva M, Morikawa T. Estimation of switching models from revealed preferences and stated intentions. Transportation Research Part A: General. 1990; 24(6): 485-495. [https://doi.org/10.1016/0191-2607(90)90037-7]
Birol E, Karousakis K, Koundouri P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological economics. 2006; 60(1): 145-156. [https://doi.org/10.1016/j.ecolecon.2006.06.002]
Bokusheva R. Measuring the dependence structure between yield and weather variables. 2010. https://mpra.ub.unimuenchen.de/22786/1/MPRA_paper_22786.pdf
Budhathoki N K, Lassa J A, Pun S, Zander K K. Farmers’ interest and willingness-to-pay for index-based crop insurance in the lowlands of Nepal. Land use policy. 2019; 85: 1-10. [https://doi.org/10.1016/j.landusepol.2019.03.029]
Castellani D, Viganò L. Does willingness-to-pay for weather index-based insurance follow covariant shocks? International Journal of Bank Marketing. 2017; 35(3): 516-539. https://www.emerald.com/insight/content/doi/10.1108/IJBM-10-2016-0155/full/html
Cheraghi-Sohi S, Hole A R, Mead N, McDonald, R, Whalley D, Bower P, Roland M. What patients want from primary care consultations: a discrete choice experiment to identify patients’ priorities. The Annals of Family Medicine. 2008; 6(2): 107-115. [DOI: https://doi.org/10.1370/afm.816]
Fleisher B. Agricultural risk management. Lynne Rienner.Publishers.1990. https://doi.org/10.1515/9781685855901
Fund A. Report on the performance of the Agricultural Products Insurance Fund in recent years. Management and planning services group. 2013.
Gebre M B. Analyses of the willingness to pay for weather index insurance. 2014. https://www.duo.uio.no/handle/10852/40988
Ghahramanzadeh M, Dashti G, Afrasyabi S, Hosseinzade J, Hayati B. Finding the Background of Proposed Climate Index Insurance in Dryland Wheat Crop of Ahar County. Iran Economic Research and Agricultural. 2014; 45: 383-393. https://journals.ut.ac.ir/article_52174.html
Ghanbari S, shayan M, Rashidi S, Ebrahimipour F, Raesi M K. Agricultural Development Abilities in Darab County and Predicting Its Results on Rural Development. Geography and Environmental Sustainability. 2019; 9(2): 67-82. [https://doi.org/10.22126/ges.1970.1158]
Hashemibonab S, Sharzei G, Yazdani S. Estimating Value of Non-Use Services of Agricultural Lands for Residents with Choice Experiment Method (Case of Mazandaran Province). Agricultural Economics. 2012; 6(3): 177-209. https://www.iranianjae.ir/article_9305_144732bd22e51ada32b325c8349fec43.pdf
Hausman J, McFadden D. Specification tests for the multinomial logit model. Econometrica: Journal of the econometric society. 1984: 1219-1240. [https://doi.org/10.2307/1910997]
Hensher D, Louviere J, Swait J. Combining sources of preference data. Journal of Econometrics. 1998; 89(1-2): 197-221. [https://doi.org/10.1016/S0304-4076(98)00061-X]
Jørgensen S L, Termansen M, Pascual U. Natural insurance as condition for market insurance: Climate change adaptation in agriculture. Ecological economics. 2020; 169: 106489. [https://doi.org/10.1016/j.ecolecon.2019.106489]
Kadas A, Khan T, Kishore A. Willingness to pay for weather-based crop insurance in Punjab. 2018. https://ageconsearch.umn.edu/record/277516/
Lancaster K J. A new approach to consumer theory. Journal of political economy. 1966; 74(2): 132-157. http://pombo.free.fr/lancaster66b.pdf
Liu X, Tang Y, Miranda M J. Does past experience in natural disasters affect willingness-to-pay for weather index insurance? Evidence from China. 2015.
Louviere J J, Hensher D A, Swait J D. Stated choice methods: analysis and applications. Cambridge university press. 2000. https://www.academia.edu/download/24862915/00023024.pdf
Louviere JJ, Woodworth G. Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. Journal of marketing research. 1983; 20(4): 350-367. [https://doi.org/10.1177/002224378302000403]
Manski C F. The structure of random utility models. Theory and decision. 1977; 8(3): 229. https://search.proquest.com/openview/7acf07ef00e4d7b837b4de87994aed40/1?pq-origsite=gscholar&cbl=1818302
McFadden D. Conditional logit analysis of qualitative choice behavior. 1973. https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
Mohammadi H, Farajzadeh Z, Dehbashi V, Shahraki I. Analysis of Citrus Marketing in Fars Province. Agricultural Economics and Development. 2014; 22(2): 1-30. [https://doi.org/10.30490/aead.2014.58921]
Morrison M, Bennett J, Blamey, R. Valuing improved wetland quality using choice modeling. Water resources research. 1999; 35(9): 2805-2814. [ https://doi.org/10.1029/1999WR900020]
Navrud S, Vondolia G K. Farmers′ preferences for reductions in flood risk under monetary and non-monetary payment modes. Water Resources and Economics. 2020; 30: 100151. [https://doi.org/10.1016/j.wre.2019.100151]
Nikbakht Shahbazi A. Investigation of Crop Evapotranspiration and Precipitation changes under Climate Change RCPs Scenarios in Khouzestan province. Journal of Water and Soil Conservation. 2019; 25(6): 123-139. https://jwsc.gau.ac.ir/article_4466_ed1cc4b8cb66f1b162be750ae0e3ac27.pdf
Orme B. Sample size issues for conjoint analysis studies. Sequim: Sawtooth Software Technical Paper. 1998.
Pishbahar E. Weather-Based Crop Insurance (WBCI) Premium for Rainfed Wheat in Miyaneh County: D-Vine Copula Approach Application. Agricultural Economics. 2015; 9(3): 37-62. https://www.iranianjae.ir/article_14513_2a54b538f2fa8a397c0c248c175aa2ab.pdf
Rolfe J, Bennett J, Louviere J. Choice modelling and its potential application to tropical rainforest preservation. Ecological economics. 2000; 35(2): 289-302. [https://doi.org/10.1016/S0921-8009(00)00201-9]
Shahiki Tash M N, Yazdani F, Gholipor E. The Effect of Advertisement on the Probability of Acceptance Insurance by Pistachio Growers in Kerman. Journal of Pistachio Science and Technology. 2018; 1(1): 58-68. https://pistachio.vru.ac.ir/article_62727_5f9dc65c142241b78b03aaacd9e2dbef.pdf?lang=en
Shee A, Turvey C G, Marr A. Heterogeneous Demand and Supply for an Insurance‐linked Credit Product in Kenya: A Stated Choice Experiment Approach. Journal of Agricultural Economics. 2021; 72(1): 244-267. [https://doi.org/10.1111/1477-9552.12401]
Skees J R, Varangis P, Larson D F, Siegel P B. Can financial markets be tapped to help poor people cope with weather risks? Available at SSRN 636095. 2002. https://ssrn.com/abstract=636095
sobhanian s m h, mehrara m. Study of Factors inFluencing Physician Decision to Enter the Family Physician Program; A Case Study of Tehran [Applicable]. Journal of Economic Modeling Research. 2016; 7(26): 7-40. [https://doi.org/10.18869/acadpub.jemr.7.26.7]
Stoppa A, Hess U. Design and use of weather derivatives in agricultural policies: the case of rainfall index insurance in Morocco. International Conference “Agricultural Policy Reform and the WTO: Where are we heading”, Capri (Italy), 2003. https://www.farmd.org/app/uploads/2019/05/Design-and-Use-of-Weather-Derivatives-Morocco.pdf.
Tadesse M A, Alfnes F, Erenstein O, Holden, S. T. Demand for a labor‐based drought insurance scheme in Ethiopia: a stated choice experiment approach. Agricultural Economics. 2017; 48(4): 501-511. https://doi.org/10.1111/agec.12351
Torabi S, Dourandish A, Daneshvar Kakhki M, KianiRad A, Mohammadi H. The Computation of Weather-Based Index Insurance Premium and Indemnity function for Apple in Damavand County: The Application of Different Types of Elliptical and Archimedean Copulas. Iranian Journal of Agricultural Economics and Development Research. 2018; 49(1): 23-41. [https://doi.org/10.22059/IJAEDR.2018.235412.668447]
Turvey C G, Kong R, Belltawn B. Weather risk and the viability of weather insurance in western China. 2009. https://ageconsearch.umn.edu/record/49362/files/Weather%20Risk%20in%20China.aaea.Paper.pdf.
Vojáček O, Pecáková I. Comparison of discrete choice models for economic environmental research. Prague economic papers. 2010; 19(1): 35-53. [https://www.academia.edu/download/86956783/download.pdf]
Yazdani S. Income insurance; New model in crop risk management. Agricultural Economics and Development. 2004; 12: 47-67. https://sid.ir/paper/367068/fa
_||_