حلالیت دیاکسیدکربن در مایع یونی ا-بوتیل-3-متیلایمیدازولیم نیترات در فشار بالا
محورهای موضوعی : شیمی کاربردیمجتبی میرزائی 1 * , فائضه عظیمی 2 , بابک مختارانی 3 , علی شریفی 4
1 - استادیار شیمی کاربردی، پژوهشکده فناوریهای نوین، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران.
2 - دانشجوی کارشناسی ارشد مهندسی شیمی، پژوهشکده مهندسی نفت، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران.
3 - استاد مهندسی شیمی، پژوهشکده مهندسی نفت، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران.
4 - دانشیار شیمی آلی، پژوهشکده فناوریهای نوین، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران،ایران.
کلید واژه: مایع یونی بر پایه ایمیدازولیم, ثابت قانون هنری, برجذب کربن دیاکسید,
چکیده مقاله :
دادههای تجربی حلالیت CO2 در مایع یونی 1-بوتیل-3-متیل ایمیدازولیم نیترات [Bmim][NO3] در گستره دمایی 25 تا 60 درجه سلسیوس و فشار تا60/4 مگاپاسکال به دست آمد. فرایند جذب در یک واکنشگاه ناپیوسته دو جداره از جنس فولاد زنگ نزن با قابلیت عملیاتی تحمل فشار تا 10 مگاپاسکال مجهز به همزن مکانیکی، حسگرهای فشار و دما، مطالعه شد. با شروع فرایند برجذب گاز CO2، فشار داخل واکنشگاه شروع به افت کرد. نقطه تعادل زمانی انتخاب شد که طی 15 دقیقه کاهش فشاری مشاهده نمی شد. یافتهها نشان داد با افزایش فشار و کاهش دما، حلالیت CO2 در مایعیونی [Bmim][NO3] افزایش یافت. با واردکردن نقاط تعادلی به دست آمده از آزمایش ها در معادله حالت اسپن-واگنر، حجم مولی و فوگاسیته محاسبه شد که برای به دست آوردن ثابتهای قانون هنری در فشار صفر CO2 (KoH,CO2)در مایع یونی [Bmim][NO3] به کارگرفته شدند.
The experimental data of CO2 solubility in the ionic liquid 1-butyl-3-methylimidazolium nitrate [Bmim][NO3] were obtained in the temperature range of 25-60 oC and the pressure up to 4.6 MPa. The adsorption process was studied in a double-walled stainless steel batch reactor with the operational capability of bearing pressure up to 10 MPa, which was equipped with a mechanical stirrer, pressure and temperature sensors. By sarting the CO2 adsorption process, the pressure inside the reactor began to drop, and the equilibrium point was when there was no pressure drop within 15 minutes. The findings showed that the solubility of CO2 in [Bmim][NO3] increased with increasing pressure and decreasing temperature. By entering the equilibrium points obtained from the experiments in the Span-Wagner equation of state, the molar volume (Vm) and fugacity (fCO2) were obtained, which were finally used to obtain the Henry's law constants at zero pressure of CO2 (K°H,CO2) in the ionic liquid [Bmim][NO3].
[1] Ramdin M, de Loos TW, Vlugt TJ. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind Eng Chem Res. 2012; 51:8149-8177. doi: org/10.1021/ie3003705
[2] Liu Z, Deng Z, Davis S, Ciais P. Monitoring global carbon emissions in 2022. Nat Rev Earth Environ. 2023;4:205–206. doi: org/10.1038/s43017-023-00406-z
[3] Ramdin M, Olasagasti TZ, Vlugt TJH, de Loos TW. High pressure solubility of CO2 in non-fluorinated phosphonium-based ionic liquids. J Supercrit Fluids. 2013;82:41–49. doi: org/10.1016/j.supflu.2013.06.004
[4] Janiczek P, Kalb RS, Thonhauser G, Gamse T. Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Sep Purif Technol. 2012; 97:20-25. doi: org/10.1016/j.seppur.2012.03.003
[5] Taib MM, Murugesan T. Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chem Eng J. 2012;181–182:56–62. doi: org/10.1016/j.cej.2011.09.048
[6] Yuan X, Zhang S, Liu J, Lu X. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilib. 2007;257(2):195–200. doi: org/10.1016/j.fluid.2007.01.031
[7] Zhao Z, Dong H, Zhang X. The research progress of CO2 capture with ionic liquids. Chin J Chem Eng. 2012;20(1):120–9. doi: org/10.1016/S1004-9541(12)60371-1
[8] Shiflett MB, Drew DW, Cantini RA, Yokozeki A. Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy Fuels. 2010;24(10):5781–9. doi: org/10.1021/ef100868a
[9] Safavi M, Ghotbi C, Taghikhani V, Jalili AH, Mehdizadeh A. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. J Chem Thermodyn. 2013;65:220–32. doi: org/10.1016/j.jct.2013.05.038
[10] Yunus NM, Mutalib MIA, Man Z, Bustam MA, Murugesan T. Solubility of CO2 in pyridinium based ionic liquids. Chem Eng J. 2012;189–190:94–100. doi: org/10.1016/j.cej.2012.02.033
[11] Zhou L, Fan J, Shang X, Wang J. Solubilities of CO2, H2, N2 and O2 in ionic liquid 1-n-butyl-3-methylimidazolium heptafluorobutyrate. J Chem Thermodyn. 2013;59:28–34. doi: org/10.1016/j.jct.2012.11.030
[12] Shin E-K, Lee B-C, Lim JS. High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Supercrit Fluids. 2008;45(3):282–92. doi: org/10.1016/j.supflu.2008.01.020
[13] Stevanovic S, Costa Gomes MF. Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. J Chem Thermodyn. 2013;59:65–71. doi: org/10.1016/j.jct.2012.11.010
[14] Mirzaei M, Mokhtarani B, Badiei A, Sharifi A. Solubility of carbon dioxide and methane in 1-hexyl-3-methylimidazolium nitrate ionic liquid, experimental and thermodynamic modeling. J Chem Thermodyn. 2018;122:31–37. doi: org/10.1016/j.jct.2018.03.003
[15] Mokhtarani B, Negar Khatun A, Mafi M, Sharifi A, Mirzaei M. Experimental study on the solubility of carbon dioxide in nitrate and thiocyanate-based ionic liquids. J Chem Eng Data. 2016;61(3):1262–1269. doi: org/10.1021/acs.jced.5b00894
[16] Mirzaei M, Sharifi A, Abaee MS. Experimental study on solubility of CO2 and CH4 in the ionic liquid 1-benzyl-3-methylimidazolium nitrate. J Supercrit Fluids. 2023;199:105963. doi: org/10.1016/j.supflu.2023.105963
[17] Dupont J, Consorti CS, Suarez PAZ, de Sousa RF. Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org Synth. 2002;79:236. doi: org/10.15227/orgsyn.079.0236
[18] Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3(23):5192–5200. doi: org/10.1039/B106900D
[19] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data. 1996;25(6):1509–96. doi: org/10.1063/1.555991
[20] Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G. Solubility of CO2 in the ionic liquid [hmim][Tf2N]. J Chem Thermodyn. 2006;38(11):1396–401. doi: org/10.1016/j.jct.2006.01.013
[21] Jalili AH, Mehdizadeh A, Ahmadi AN, Zoghi AT, Shokouhi M. Solubility behavior of CO2 and H2S in 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J Chem Thermodyn. 2022;167:106721. doi: org/10.1016/j.jct.2021.106721
[22] Aki SNVK, Mellein BR, Saurer EM, Brennecke JF. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B. 2004;108(52):20355–65. doi: org/10.1021/jp046895+
[23] Blanchard LA, Gu Z, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B. 2001;105(12):2437–44a. doi: org/10.1021/jp003309d
_||_[1] Ramdin M, de Loos TW, Vlugt TJ. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind Eng Chem Res. 2012; 51:8149-8177. doi: org/10.1021/ie3003705
[2] Liu Z, Deng Z, Davis S, Ciais P. Monitoring global carbon emissions in 2022. Nat Rev Earth Environ. 2023;4:205–206. doi: org/10.1038/s43017-023-00406-z
[3] Ramdin M, Olasagasti TZ, Vlugt TJH, de Loos TW. High pressure solubility of CO2 in non-fluorinated phosphonium-based ionic liquids. J Supercrit Fluids. 2013;82:41–49. doi: org/10.1016/j.supflu.2013.06.004
[4] Janiczek P, Kalb RS, Thonhauser G, Gamse T. Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Sep Purif Technol. 2012; 97:20-25. doi: org/10.1016/j.seppur.2012.03.003
[5] Taib MM, Murugesan T. Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa. Chem Eng J. 2012;181–182:56–62. doi: org/10.1016/j.cej.2011.09.048
[6] Yuan X, Zhang S, Liu J, Lu X. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilib. 2007;257(2):195–200. doi: org/10.1016/j.fluid.2007.01.031
[7] Zhao Z, Dong H, Zhang X. The research progress of CO2 capture with ionic liquids. Chin J Chem Eng. 2012;20(1):120–9. doi: org/10.1016/S1004-9541(12)60371-1
[8] Shiflett MB, Drew DW, Cantini RA, Yokozeki A. Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy Fuels. 2010;24(10):5781–9. doi: org/10.1021/ef100868a
[9] Safavi M, Ghotbi C, Taghikhani V, Jalili AH, Mehdizadeh A. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. J Chem Thermodyn. 2013;65:220–32. doi: org/10.1016/j.jct.2013.05.038
[10] Yunus NM, Mutalib MIA, Man Z, Bustam MA, Murugesan T. Solubility of CO2 in pyridinium based ionic liquids. Chem Eng J. 2012;189–190:94–100. doi: org/10.1016/j.cej.2012.02.033
[11] Zhou L, Fan J, Shang X, Wang J. Solubilities of CO2, H2, N2 and O2 in ionic liquid 1-n-butyl-3-methylimidazolium heptafluorobutyrate. J Chem Thermodyn. 2013;59:28–34. doi: org/10.1016/j.jct.2012.11.030
[12] Shin E-K, Lee B-C, Lim JS. High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Supercrit Fluids. 2008;45(3):282–92. doi: org/10.1016/j.supflu.2008.01.020
[13] Stevanovic S, Costa Gomes MF. Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. J Chem Thermodyn. 2013;59:65–71. doi: org/10.1016/j.jct.2012.11.010
[14] Mirzaei M, Mokhtarani B, Badiei A, Sharifi A. Solubility of carbon dioxide and methane in 1-hexyl-3-methylimidazolium nitrate ionic liquid, experimental and thermodynamic modeling. J Chem Thermodyn. 2018;122:31–37. doi: org/10.1016/j.jct.2018.03.003
[15] Mokhtarani B, Negar Khatun A, Mafi M, Sharifi A, Mirzaei M. Experimental study on the solubility of carbon dioxide in nitrate and thiocyanate-based ionic liquids. J Chem Eng Data. 2016;61(3):1262–1269. doi: org/10.1021/acs.jced.5b00894
[16] Mirzaei M, Sharifi A, Abaee MS. Experimental study on solubility of CO2 and CH4 in the ionic liquid 1-benzyl-3-methylimidazolium nitrate. J Supercrit Fluids. 2023;199:105963. doi: org/10.1016/j.supflu.2023.105963
[17] Dupont J, Consorti CS, Suarez PAZ, de Sousa RF. Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org Synth. 2002;79:236. doi: org/10.15227/orgsyn.079.0236
[18] Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3(23):5192–5200. doi: org/10.1039/B106900D
[19] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data. 1996;25(6):1509–96. doi: org/10.1063/1.555991
[20] Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G. Solubility of CO2 in the ionic liquid [hmim][Tf2N]. J Chem Thermodyn. 2006;38(11):1396–401. doi: org/10.1016/j.jct.2006.01.013
[21] Jalili AH, Mehdizadeh A, Ahmadi AN, Zoghi AT, Shokouhi M. Solubility behavior of CO2 and H2S in 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J Chem Thermodyn. 2022;167:106721. doi: org/10.1016/j.jct.2021.106721
[22] Aki SNVK, Mellein BR, Saurer EM, Brennecke JF. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B. 2004;108(52):20355–65. doi: org/10.1021/jp046895+
[23] Blanchard LA, Gu Z, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B. 2001;105(12):2437–44a. doi: org/10.1021/jp003309d