بهینهسازی شرایط عملیاتی و نقش امواج فراصوت در سنتز سبز نانوذره های نقره با عصاره برگ درخت سیب
محورهای موضوعی : شیمی کاربردیسروین محمدی اقدم 1 * , امید احمدی 2
1 - استادیار گروه شیمی، دانشگاه پیام نور، تهران، ایران.
2 - دکترای مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران.
کلید واژه: فراصوت, طراحی آزمایش, سنتز سبز, عصاره برگ درخت سیب, نانوذره های نقره,
چکیده مقاله :
عصاره برگ درخت سیب از مواد مؤثر در سنتز نانوذره های نقره بوده که نتیجه های به دست آمده از آنالیز FTIR نشان از وجود چندین عامل کاهنده داشت. سنتز نانوذره ها از اختلاط 2 میلی لیتر عصاره به همراه 8 میلی لیتر محلول نقره نیترات طبق طراحی آزمایش انجام گرفته با روش پاسخ سطح در بازه دمای گرمادهی 30 تا °C 70 و زمان فراصوت 5 تا 25 دقیقه سنتز شد. پس از بهینه سازی انجام گرفته نتیجه ها نشان داد دمای °C52 و مدت زمان 15 دقیقه مناسب ترین حالت برای سنتز نانوذره ها بوده که در این حالت بیشترین غلظت ppm 10/27، کمترین میانگین اندازه ذره ها 66 نانومتر و بالاترین ویژگی پاداکسندگی 48/31% به دست خواهد آمد. نتیجه های به دست آمده از تجزیه های UV-Vis و DLS در نقطه بهینه با اختلاف جزئی تأیید شد. شاخص پراکندگی و پتانسیل زتا به ترتیب 397/0 و mV 2/21 به دست آمد. نانوذره های نقره ویژگی مناسب پادباکتریایی در مقابل باکتری استافیلوکوکوس اورئوس و اشرشیا کولی به ترتیب با قطر هاله 56 و 48 میلی متر از خود نشان داد. ویژگی پادقارچی نانوذره ها 72% به دست آمد.
Apple tree leaf extract is one of the effective materials in the synthesis of AgNPs, the results of FTIR spectroscopy showed the presence of several reducing agents. AgNPs were synthesized by mixing 2 ml of extract with 8 ml of AgNO3 solution based on the design of the experiment by surface response methodology in the heating temperature range of 30-70 °C and ultrasound time of 5-25 min. After the optimization, the results showed that the temperature of 52 °C and the duration of 15 min was the most suitable mode for the synthesis of AgNPs, in which the highest concentration was 27.10 ppm, the lowest average particle size was 66 nm, and the highest antioxidant property was 31.48. %. The results of UV-Vis spectroscopy and DLS analysis were confirmed at the optimum point with a slight difference, and the PDI and zeta potential were obtained as 0.397 and 21.2 mV, respectively. AgNPs showed good antibacterial properties against Staphylococcus aureus and Escherichia coli with halo diameters of 56 and 48 mm, respectively. The antifungal property of nanoparticles was 72%.
[1] Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G.; Nature Nanotechnology 16, 369-384, 2021.
[2] Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; International Journal of Nanomedicine 14, 5087-5107, 2019.
[3] Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A.; Materials 15, 427-439, 2022.
[4] Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I.; Journal of Radiation Research Applied Sciences 15, 109-124, 2022.
[5]. Mustapha, T.; Misni, N.; Ithnin, N.R.; Daskum, A.M.; Unyah, N.Z.; International Journal of Environmental Research Public Health 19(2), 674-690, 2022.
[6] Chung, I.-M.;Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar G.; Nanoscale Res. Lett. 11, 1-14, 2016.
[7] Esmaili, S.; Zinsaz, P.; Ahmadi, O.; Najian, Y.; Vaghari, H.; Jafarizadeh-Malmiri, H.; Zeitschrift für Physikalische Chemie 236, 1567-1581, 2022.
[8] Eshghi, M.; Kamali-Shojaei, A.; Vaghari, H.; Najian, Y.; Mohebian, Z.; Ahmadi, O.; Jafarizadeh-Malmiri, H.; Green Processing Synthesis 10, 606-613, 2021.
[9] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N.; Zeitschrift für Physikalische Chemie 233, 651-667, 2019.
[10] Stirpe, M.; Palermo, V.; Bianchi, M.M.; Silvestri, R.; Falcone, C.; Tenore, G.; Novellino, E.; Mazzoni, C.; BMC Complementary Alternative Medicine 17, 1-7, 2017.
[11] Alshahrani, S.H.; Alameri, A.A.; Zabibah, R.S.; Jalil, A.T.J.; Ahmadi, O.; Behbudi, G.; Journal of the Mexican Chemical Society 66(4), 480-487, 2022.
[12] Khalilnejad, A.; Lashkari, R.; Iravani, M.; Ahmadi, O.; "Saint Petersburg 2020 Conference Proceeding", European Association of Geoscientists and Engineers., November 16-19, 2020.
[13] Manjamadha, V.; Muthukumar, K.; Bioprocess Biosystems Engineering 39, 401-411, 2016.
[14] Zhang, C.; Hu, Z.; Deng, B.; Water research 88, 403-427, 2016.
[15] Ibrahim, S.; Ahmad, Z.; Manzoor, M.Z.; Mujahid, M.; Faheem, Z.; Adnan, A.J.S.R. 11, 1-18, 2021.
[16] Ahmadi, O.; Seifi, M.; Jafarizadeh-Malmiri, H.; Iranian Chemical Engineering Journal 20, 82-96, 2021.
[17] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Zeitschrift für Physikalische Chemie 235, 629-648, 2021.
[18] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Green Processing Synthesis 10, 430-439, 2021.
[19] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Food Science Biotechnology 29, 783-792, 2020.
[20] Abdelsalam, N.R.; Fouda, M.M.; Abdel-Megeed, A.; Ajarem, J.; Allam, A.A.; El-Naggar, M.E.; International Journal of Biological Macromolecules 133, 1008-1018, 2019.
[21] Tang, S.; Zheng, J.; Adv. Healthc. Mater. 7, 1701503, 2018.
[22] Rajeshkumar, S.; Bharath, L.; Chemico-biological Interactions 273, 219-227, 2017.
_||_[1] Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G.; Nature Nanotechnology 16, 369-384, 2021.
[2] Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; International Journal of Nanomedicine 14, 5087-5107, 2019.
[3] Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A.; Materials 15, 427-439, 2022.
[4] Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I.; Journal of Radiation Research Applied Sciences 15, 109-124, 2022.
[5]. Mustapha, T.; Misni, N.; Ithnin, N.R.; Daskum, A.M.; Unyah, N.Z.; International Journal of Environmental Research Public Health 19(2), 674-690, 2022.
[6] Chung, I.-M.;Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar G.; Nanoscale Res. Lett. 11, 1-14, 2016.
[7] Esmaili, S.; Zinsaz, P.; Ahmadi, O.; Najian, Y.; Vaghari, H.; Jafarizadeh-Malmiri, H.; Zeitschrift für Physikalische Chemie 236, 1567-1581, 2022.
[8] Eshghi, M.; Kamali-Shojaei, A.; Vaghari, H.; Najian, Y.; Mohebian, Z.; Ahmadi, O.; Jafarizadeh-Malmiri, H.; Green Processing Synthesis 10, 606-613, 2021.
[9] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N.; Zeitschrift für Physikalische Chemie 233, 651-667, 2019.
[10] Stirpe, M.; Palermo, V.; Bianchi, M.M.; Silvestri, R.; Falcone, C.; Tenore, G.; Novellino, E.; Mazzoni, C.; BMC Complementary Alternative Medicine 17, 1-7, 2017.
[11] Alshahrani, S.H.; Alameri, A.A.; Zabibah, R.S.; Jalil, A.T.J.; Ahmadi, O.; Behbudi, G.; Journal of the Mexican Chemical Society 66(4), 480-487, 2022.
[12] Khalilnejad, A.; Lashkari, R.; Iravani, M.; Ahmadi, O.; "Saint Petersburg 2020 Conference Proceeding", European Association of Geoscientists and Engineers., November 16-19, 2020.
[13] Manjamadha, V.; Muthukumar, K.; Bioprocess Biosystems Engineering 39, 401-411, 2016.
[14] Zhang, C.; Hu, Z.; Deng, B.; Water research 88, 403-427, 2016.
[15] Ibrahim, S.; Ahmad, Z.; Manzoor, M.Z.; Mujahid, M.; Faheem, Z.; Adnan, A.J.S.R. 11, 1-18, 2021.
[16] Ahmadi, O.; Seifi, M.; Jafarizadeh-Malmiri, H.; Iranian Chemical Engineering Journal 20, 82-96, 2021.
[17] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Zeitschrift für Physikalische Chemie 235, 629-648, 2021.
[18] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Green Processing Synthesis 10, 430-439, 2021.
[19] Ahmadi, O.; Jafarizadeh-Malmiri, H.; Food Science Biotechnology 29, 783-792, 2020.
[20] Abdelsalam, N.R.; Fouda, M.M.; Abdel-Megeed, A.; Ajarem, J.; Allam, A.A.; El-Naggar, M.E.; International Journal of Biological Macromolecules 133, 1008-1018, 2019.
[21] Tang, S.; Zheng, J.; Adv. Healthc. Mater. 7, 1701503, 2018.
[22] Rajeshkumar, S.; Bharath, L.; Chemico-biological Interactions 273, 219-227, 2017.