تهیه نانوکاتالیست مغناطیسی ناهمگن برپایه گرافن اکسید کاهشیافته با ذرههای نیکل و کبالت و بررسی فعالیت آن در واکنشهای جفتشدن هک، سونوگاشیرا و احیای 4-نیتروفنل
محورهای موضوعی : شیمی کاربردیعبدالرضا ابری 1 * , فروغ مطلوبی 2
1 - دانشیار گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
2 - دانش آموخته کارشناسی ارشد شیمی آلی، دانشکده شیمی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
کلید واژه: گرافناکسید, نانوذره نیکل, نانوذره کبالت, واکنشهای جفت شدن تک مرحله ای,
چکیده مقاله :
در این پژوهش، نانوذره های فلزی نیکل و کبالت به روش تک ظرفی و سبز بر روی بستر گرافن اکسید تهیه و با روشهای طیفشناسی فروسرخ تبدیل فوریه (FTIR)، میکروسکوپی الکترونی پویشی گسیل میدانی (FESEM)، پراش پرتو ایکس (XRD) و مغناطیسسنجی نمونه ارتعاشی (VSM) شناسایی و کارایی آن در واکنش کاهش 4-نیتروفنل، واکنش های جفت شدن هک و سونوگاشیرا بررسی شد. درصد تبدیل واکنشدهنده ها با بهکارگیری طیفشناسی فرابنفش-مرئی (UV-Vis) و سوانگاری گازی (GC) محاسبه شد. نتیجه ها نشان داد که ذره های مغناطیسی نیکل و کبالت با اندازه در حدود 20 تا 40 نانومتر به طور یکنواخت بر نانوصفحههای گرافن اکسید قرارگرفته و واکنش های آلی تحت تاثیر کاتالیست حاوی نیکل وکبالت در شرایط بهینه با بازده بالا قابل انجام است. با توجه به رفتار فرومغناطیس این نانوکاتالیست ها، قابلیت جداشدن و چندین مرتبه استفاده را داشتند و درنتیجه می توان از آن بهعنوان یک کاتالیست مطمئن و موثر در واکنش های جفتشدن آلی بهره برد.
Today catalysts are widely used in the production of various materials. Nano-catalysts according to their importance have become one of the most important areas for Nanotechnology research. Development of magnetic catalysts for carbon–carbon and carbon–heteroatom coupling reactions are one of the most important issues in terms of applications to organic synthesis. At present, many researches are focused on the construction of more active and more stable, heterogeneous Nano-sized metal catalysts, which can be recovered and reused. Nickel and cobalt nanoparticles due to low prices, magnetic properties and high chemical activity attracted particular attention. In this work, nickel and cobalt nanoparticles were synthesized with a green and one-pot method on graphene oxide substrate for reduction reaction of 4-nitrophenol, Heck and Sonogashira cross-coupling reactions. Several characterization techniques such as FTIR, FESEM, XRD, and VSM were employed to characterize the Co and Ni nanoparticle reduced graphene oxide composites witch indicates that nickel and cobalt magnetic particles with a size of about 20-30 nanometers were uniformly anchored on graphene oxide nanosheets. In addition, results showed that incorporation of Co and Ni nanoparticles and GO produce much higher activity in cross-coupling and reduction reactions. The soft-ferromagnetic behavior of the RGO/CoxNi100-x nanocomposite demonstrated the easy separable from the reaction mixture and reusable several times without losing its catalytic activity, Hence, the RGO/CoxNi100-x composites can be a potential promising material to catalyze the cross-coupling reactions
[1] Astruc, D.; “Nanoparticles and catalysis”, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[2] Bechara, R.; Balloy, D.; Vanhove, D.; Appl. Catal. A 207(1-2), 343-353, 2001.
[3] Safari, J.; Gandomi-Ravandi, S.; C. R. Chim. 16(12), 1158-1164, 2013.
[4] Xie, R.; Fan, G.; Ma, Q.; Yang, L.; Li, F.; J. Mater. Chem. A 2(21), 7880-7889, 2014.
[5] Xiang, J.; Drzal, L. T.; ACS Appl. Mater. Interfaces. 3(4), 1325-1332, 2011.
[6] Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C; Phys. Chem. Chem. Phys. 13(9), 4083-4094, 2011.
[7] Zhang, N.; Qiu, H.; Liu, Y.; Wang, W.; Li, Y.; Wang, X.; Gao, J.; J. Mater. Chem. 21(30), 11080-11083, 2011.
[8] Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E.; ACS Nano. 4(7), 3959-3968, 2010.
[9] Choi, S.M.; Seo, M.H.; Kim, H.J.; Kim, W.B.; Carbon 49(3), 904-909, 2011.
[10] Kundu, P.; Nethravathi, C.; Deshpande, P.A.; Rajamathi, M.; Madras, G.; Ravishankar, N.; Chem. Mater. 23(11), 2772-2780, 2011.
[11] Santos, A.S.; Mortinho, A.C.; Marques, M. M.B, Molecules, 2673(23), 1-16, 2018, Albano, G.; Aronica, L.A., Catalysts 10 (25), 1-36, 2020.
[12] Bouakri, L.; Mansour, L.; Harrath, A.H.; Özdemir, I.; Yaşar, S.; Hamdi, N.; J. Coord. Chem. 71(2), 183-199, 2018.
[13] Ueno, M.; Miyoshi, N.; Hanada, K.; Kobayashi, S.; Asian J. Org. Chem. 9, 267 –273, 2020.
[14] Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M.; J. Mater. Chem. 21(21), 7795-7801, 2011.
[15] Zhang, Z.; Xu, F.; Yang, W.; Guo, M.; Wang, X.; Zhang, B.; Tang, J.; ChemComm. 47(22), 6440-6442, 2011.
[16] Xu, Z.; Gao, H.; Guoxin, H.; Carbon. 49(14), 4731-4738, 2011.
[17] Bong, S.; Kim, Y. R.; Kim, I.; Woo, S.; Uhm, S.; Lee, J.; Kim, H.; Electrochem. Commun. 12(1), 129-131, 2010.
[18] Kim, H.J.; Choi, S. M.; Seo, M.H.; Green, S.; Huber, G.W.; Kim, W.B.; Electrochem. Commun. 13(8), 890-893, 2011.
[19] Tang, Z.; Shen, S.; Zhuang, J.; Wang, X.; Angew. Chem. 122(27), 4707-4711, 2010.
[20] Zou, Y.H.; Liu, H.B.; Yang, L.; Chen, Z.Z.; J. Magn. Magn. Mater. 302(2), 343-347, 2006.
[21] Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B.; Adv. Synth. Catal. 353(4), 523-527, 2011.
[22] Bin, X.; Chen, J.; Cao, H.; Chen, L.; Yuan, J.; J. Phys. Chem. Solids 70(1), 1-7, 2009.
[23] Hassan, H.M.; Abdelsayed, V.; Abd El Rahman, S.K.; AbouZeid, K.M.; Terner, J.; El-Shall, M.S.; El-Azhary, A.A.; J. Mater. Chem. 19(23), 3832-3837, 2009.
[24] Zhang, K.; Yue, Q.; Chen, G.; Zhai, Y.; Wang, L.; Wang, H.; Li, H.; J. Phys. Chem. C. 115(2), 379-389, 2010.
[25] Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Müllen, K.; ChemSusChem. 3(2), 236-239, 2010.
[26] Paul, H.; Mohanta, D.; Appl. Phys. A. 103(2), 395-402, 2011.
[27] Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K.; J. Mater. Chem. 19(44), 8378-8384, 2009.
[28] Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y.; J. Mater. Chem. A. 3(21), 11157-11182, 2015.
[29] Agegnehu, A.K.; Pan, C.J.; Rick, J.; Lee, J.F.; Su, W.N.; Hwang, B.J.; J. Mater. Chem. 22(27), 13849-13854, 2012.
[30] Metin, Ö.; Ho, S.F.; Alp, C.; Can, H.; Mankin, M.N.; Gültekin, M.S.; Sun, S.; Nano Res. 6(1), 10-18, 2013.
[31] Hussain, N.; Gogoi, P.; Khare, P.; Das, M.R.; RSC Adv. 5(125), 103105-103115, 2015.
[32] Krishna, R.; Fernandes, D.M.; Dias, C.; Freire, C.; Ventura, J., Titus, E.; Mater. Today 3(8), 2814-2821, 2016.
[33] Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Tour, J.M.; ACS Nano.4(8), 4806-4814, 2010.
[34] Chen, J.; Yao, B.; Li, C.; Shi, G.; Carbon. 64, 225-229, 2013.
[35] Lu, Y.H.; Zhou, M.; Zhang, C.; Feng, Y.P.; J. Phys. Chem. C. 113(47), 20156-20160, 2009.
[36] Bai, S.; Shen, X.; Zhu, G.; Li, M.; Xi, H.; Chen, K.; ACS Appl. Mater. Interfaces 4(5), 2378-2386, 2012.
[37] Wei, X.W.; Zhou, X.M.; Wu, K.L.; Chen, Y.; CrystEngComm. 13(5), 1328-1332, 2011.
[38] Hu, M..; Lin, B.; Yu, S.H.; Nano Res. 1(4), 303-313, 2008.
[39] Krishna, R.; Fernandes, D.M.; Dias, C.; Ventura, J.; Ramana, E.V.; Freire, C.; Titus, E.; Int. J. Hydrog. Energy. 40(14), 4996-5005, 2015.
[40] Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; J. Am. Chem. Soc. 124(23), 6514-6515, 2002.
[41] Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P.; Tetrahedron 62(32), 7521-7533, 2006.
[42] Nakao, Y.; Kanyiva, K.S.; Hiyama, T.; J. Am. Chem. Soc. 130(8), 2448-2449, 2008.
[43] Zhang, J.; Li, T.; Zhao, X.; Zhao, Y.; Li, F.; Li, X.; J. Colloid Interface Sci. 463, 13–21, 2016.
[44] Deol, H.; Pramanik, S.; Kumar, M.; Khan, I.A.; Bhalla, V.; ACS Catal.. 6, 3771–3783, 2016.
[45] Diyarbakir, S.; Can, H.; Metin, Ö.; ACS Appl. Mater. Interfaces 7, 3199–3206, 2015.
[46] Zhao, Y.; Song, Q.; ChemComm. 51, 13272–13274, 2015.
[47] Mukherjee, N.; Kundu, D.; Ranu, B.C.; ChemComm. 50, 15784–15787, 2014.
[48] Shelke, S.N.; Bankar, S.R.; Mhaske, G.R.; Kadam, S.S.; Murade, D.K.; Bhorkade, S.B.; ACS Sustain. Chem. Eng. 2, 1699–1706, 2014.
[49] Ma, D.; Liu, F.; ChemComm. 17, 1934–1935, 2004.
_||_[1] Astruc, D.; “Nanoparticles and catalysis”, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[2] Bechara, R.; Balloy, D.; Vanhove, D.; Appl. Catal. A 207(1-2), 343-353, 2001.
[3] Safari, J.; Gandomi-Ravandi, S.; C. R. Chim. 16(12), 1158-1164, 2013.
[4] Xie, R.; Fan, G.; Ma, Q.; Yang, L.; Li, F.; J. Mater. Chem. A 2(21), 7880-7889, 2014.
[5] Xiang, J.; Drzal, L. T.; ACS Appl. Mater. Interfaces. 3(4), 1325-1332, 2011.
[6] Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C; Phys. Chem. Chem. Phys. 13(9), 4083-4094, 2011.
[7] Zhang, N.; Qiu, H.; Liu, Y.; Wang, W.; Li, Y.; Wang, X.; Gao, J.; J. Mater. Chem. 21(30), 11080-11083, 2011.
[8] Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E.; ACS Nano. 4(7), 3959-3968, 2010.
[9] Choi, S.M.; Seo, M.H.; Kim, H.J.; Kim, W.B.; Carbon 49(3), 904-909, 2011.
[10] Kundu, P.; Nethravathi, C.; Deshpande, P.A.; Rajamathi, M.; Madras, G.; Ravishankar, N.; Chem. Mater. 23(11), 2772-2780, 2011.
[11] Santos, A.S.; Mortinho, A.C.; Marques, M. M.B, Molecules, 2673(23), 1-16, 2018, Albano, G.; Aronica, L.A., Catalysts 10 (25), 1-36, 2020.
[12] Bouakri, L.; Mansour, L.; Harrath, A.H.; Özdemir, I.; Yaşar, S.; Hamdi, N.; J. Coord. Chem. 71(2), 183-199, 2018.
[13] Ueno, M.; Miyoshi, N.; Hanada, K.; Kobayashi, S.; Asian J. Org. Chem. 9, 267 –273, 2020.
[14] Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M.; J. Mater. Chem. 21(21), 7795-7801, 2011.
[15] Zhang, Z.; Xu, F.; Yang, W.; Guo, M.; Wang, X.; Zhang, B.; Tang, J.; ChemComm. 47(22), 6440-6442, 2011.
[16] Xu, Z.; Gao, H.; Guoxin, H.; Carbon. 49(14), 4731-4738, 2011.
[17] Bong, S.; Kim, Y. R.; Kim, I.; Woo, S.; Uhm, S.; Lee, J.; Kim, H.; Electrochem. Commun. 12(1), 129-131, 2010.
[18] Kim, H.J.; Choi, S. M.; Seo, M.H.; Green, S.; Huber, G.W.; Kim, W.B.; Electrochem. Commun. 13(8), 890-893, 2011.
[19] Tang, Z.; Shen, S.; Zhuang, J.; Wang, X.; Angew. Chem. 122(27), 4707-4711, 2010.
[20] Zou, Y.H.; Liu, H.B.; Yang, L.; Chen, Z.Z.; J. Magn. Magn. Mater. 302(2), 343-347, 2006.
[21] Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B.; Adv. Synth. Catal. 353(4), 523-527, 2011.
[22] Bin, X.; Chen, J.; Cao, H.; Chen, L.; Yuan, J.; J. Phys. Chem. Solids 70(1), 1-7, 2009.
[23] Hassan, H.M.; Abdelsayed, V.; Abd El Rahman, S.K.; AbouZeid, K.M.; Terner, J.; El-Shall, M.S.; El-Azhary, A.A.; J. Mater. Chem. 19(23), 3832-3837, 2009.
[24] Zhang, K.; Yue, Q.; Chen, G.; Zhai, Y.; Wang, L.; Wang, H.; Li, H.; J. Phys. Chem. C. 115(2), 379-389, 2010.
[25] Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Müllen, K.; ChemSusChem. 3(2), 236-239, 2010.
[26] Paul, H.; Mohanta, D.; Appl. Phys. A. 103(2), 395-402, 2011.
[27] Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K.; J. Mater. Chem. 19(44), 8378-8384, 2009.
[28] Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y.; J. Mater. Chem. A. 3(21), 11157-11182, 2015.
[29] Agegnehu, A.K.; Pan, C.J.; Rick, J.; Lee, J.F.; Su, W.N.; Hwang, B.J.; J. Mater. Chem. 22(27), 13849-13854, 2012.
[30] Metin, Ö.; Ho, S.F.; Alp, C.; Can, H.; Mankin, M.N.; Gültekin, M.S.; Sun, S.; Nano Res. 6(1), 10-18, 2013.
[31] Hussain, N.; Gogoi, P.; Khare, P.; Das, M.R.; RSC Adv. 5(125), 103105-103115, 2015.
[32] Krishna, R.; Fernandes, D.M.; Dias, C.; Freire, C.; Ventura, J., Titus, E.; Mater. Today 3(8), 2814-2821, 2016.
[33] Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Tour, J.M.; ACS Nano.4(8), 4806-4814, 2010.
[34] Chen, J.; Yao, B.; Li, C.; Shi, G.; Carbon. 64, 225-229, 2013.
[35] Lu, Y.H.; Zhou, M.; Zhang, C.; Feng, Y.P.; J. Phys. Chem. C. 113(47), 20156-20160, 2009.
[36] Bai, S.; Shen, X.; Zhu, G.; Li, M.; Xi, H.; Chen, K.; ACS Appl. Mater. Interfaces 4(5), 2378-2386, 2012.
[37] Wei, X.W.; Zhou, X.M.; Wu, K.L.; Chen, Y.; CrystEngComm. 13(5), 1328-1332, 2011.
[38] Hu, M..; Lin, B.; Yu, S.H.; Nano Res. 1(4), 303-313, 2008.
[39] Krishna, R.; Fernandes, D.M.; Dias, C.; Ventura, J.; Ramana, E.V.; Freire, C.; Titus, E.; Int. J. Hydrog. Energy. 40(14), 4996-5005, 2015.
[40] Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; J. Am. Chem. Soc. 124(23), 6514-6515, 2002.
[41] Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P.; Tetrahedron 62(32), 7521-7533, 2006.
[42] Nakao, Y.; Kanyiva, K.S.; Hiyama, T.; J. Am. Chem. Soc. 130(8), 2448-2449, 2008.
[43] Zhang, J.; Li, T.; Zhao, X.; Zhao, Y.; Li, F.; Li, X.; J. Colloid Interface Sci. 463, 13–21, 2016.
[44] Deol, H.; Pramanik, S.; Kumar, M.; Khan, I.A.; Bhalla, V.; ACS Catal.. 6, 3771–3783, 2016.
[45] Diyarbakir, S.; Can, H.; Metin, Ö.; ACS Appl. Mater. Interfaces 7, 3199–3206, 2015.
[46] Zhao, Y.; Song, Q.; ChemComm. 51, 13272–13274, 2015.
[47] Mukherjee, N.; Kundu, D.; Ranu, B.C.; ChemComm. 50, 15784–15787, 2014.
[48] Shelke, S.N.; Bankar, S.R.; Mhaske, G.R.; Kadam, S.S.; Murade, D.K.; Bhorkade, S.B.; ACS Sustain. Chem. Eng. 2, 1699–1706, 2014.
[49] Ma, D.; Liu, F.; ChemComm. 17, 1934–1935, 2004.