تعیین مقادیر بسیار ناچیز رانیتیدین در آب آشامیدنی، قرص، سرم خون و ادرار انسان با یک روش رنگسنجی برپایه تجمع نانوذرههای طلا
محورهای موضوعی : شیمی تجزیهمریم مرادی 1 , محمودرضا سهرابی 2 * , سعید مرتضوی نیک 3
1 - دانشجوی دکتری شیمی تجزیه، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
2 - استاد شیمی تجزیه، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
3 - استادیار شیمی معدنی، دانشکده شیمی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
کلید واژه: تشدید پلاسمون سطحی, رانیتیدین, طیفسنجی, رنگسنجی, ﻧﺎﻧﻮذرههای ﻃﻼ, مقادیر بسیار ناچیز,
چکیده مقاله :
این پژوهش روش ساده، حساس و سریع طیف سنجی فرابنفش- مرئی برای تعیین مقادیر بسیار ناچیز داروی رانیتیدین (RAN) در برخی نمونه ها مانند آب آشامیدنی، قرص، سرم خون و ادرار انسان با بهکارگیری نانوذره های طلا (AuNPs) را معرفی می کند. ویژگی تشدید پلاسمون سطحی (SPR) نانوذره های طلا و برهم کنش بین رانیتیدین و نانوذره های طلا پایه این روش است. افزودن رانیتیدین به نانوذره های طلا منجر به تجمع نانوذره ها شد. میکروسکوپ الکترونی عبوری (TEM) تجمع نانوذره های طلا در حضور رانیتیدین را اثبات کرد. همچنین، توزیع اندازه نانوذره ها با پراکندگی نور پویا (DLS) بررسی شد. عاملهای موثر بر جذب مانندpH ، نوع و حجم بافر، غلظت AuNPs، زمان برهم کنش، قدرت یونی و یون های مداخلهکننده بررسی شد و شرایط بهینه بهدست آمد. گستره خطی در شرایط بهینه 5/2 تا 30 میکروگرم برلیتر به دست آمد. همچنین، ضریب تعیین (2R) برابر با 9955/0، حد تشخیص (LOD) و حد تعیین کمی (LOQ) به ترتیب برابر با 45/1 و 63/1 میکروگرم برلیتر بود. افزونبراین، اثر گونه های مداخلهکننده بررسی شد. درنهایت، نتیجه ها نشان داد که روش پیشنهادی از پتانسیل بالایی برای تعیین سریع، حساس و دقیق رانیتیدین برخوردار است.
Abstract: This research introduces a simple, sensitive, and rapid ultraviolet- visible spectrophotometry method for determination of ultra-trace amount of Ranitidine (RAN) in several sample such as drinking water, tablet, serum (blood), and human urine using gold nanoparticles (AuNPs). The surface plasmon resonance (SPR) property of AuNPs and the interaction between RAN and AuNPs is the base of this method. The addition of RAN into AuNPs led to the aggregation of AuNPs. Transmission electron microscopy (TEM) proved aggregation of AuNPs in the presence of RAN. Also, the size of the nanoparticles distribution was evaluated by dynamic light scattering (DLS). The parameters that affect the absorbance such as pH, type and volume of buffer, AuNPs concentration, interaction time, ionic strength, and interfering ions were investigated and optimized. Linear range was obtained 25-300 μgL-1 in the optimum conditions. Also, the correlation coefficient (R2 =0.9955) and the limit of detection (LOD), and limit of quantification (LOQ) were equal to 1.45 μgL-1, and 1.63 μgL-1, respectively. In addition, the effect of interfering species was investigated. Eventually, the results showed that the proposed method had a high potential for rapid, sensitive, and accurate determination of RAN
[1] Verlicchi. P.; Galletti. A.; Petrovic. M.; Barcel.; J. Hydrology 389, 416-428, 2010.
[2] Giraldo. A. L.; Penuela. G. A.; Torres. Palma. R. A.; Pino. N. J.; Palominos. R. A.; Mansilla. D.; Water Research 44, 5158–5167, 2010.
[3] Radjenovic. J.; Petrovic. M.; Barcelo. D.; Anal Bioanal Chem 387, 1365–1377, 2007.
[4] Miao. X. S.; Metcalfe. C. D.; Journal of Chromatography A 998, 133–141, 2003.
[5] Qureshi. T.; Memon. N.; Memon. S. Q.; Shaikh. H.; American Journal of Modern Chromatography 1, 45–54, 2014.
[6] Martin. J.,; Buchberger. W.; Luis Santos. J.; Alonso. E.; Aparicio. I.; Journal of Chromatography B 895– 896, 94– 101, 2012.
[7] Yeon Park. S.; Myung. S. W.; Bulletin of the Korean Chemical Society 36, 2901–2906, 2015.
[8] Kazerooni. H.; Bahreyni. A.; Ramezani. M.; Abnous. K.; Mohammad Taghdisi. S.; Nanomed. J 6, 105–111, 2019.
[9] Qi. M.; Tu. C.; Dai. Y.; Wang. W.; Wang. A.; Chen. J.; Analytical Methods 10, 3402–3407, 2018.
[10] Awual. R.; Hasan. M.; Sensors and Actuators B 206, 692–700,2015.
[11] Masoudyfar. Z.; Elhami. Sh.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 211, 234–238, 2019.
[12] Wang. R.; Fan. Sh.; Wang. R.; Wang. R.; Dou. H.; Wang. L.; NANO: Brief Reports and Reviews 8, 4 , 1350037-1–9, 2013.
[13] Hohnjec. M.; Kuftinec. J.; Malnar. M. Blazevic. N.; Anal. Profiles Drug Subst 15, 533–561, 1986.
[14] Vediappan. K.; Lee. Ch.W.; Current Applied Physics 11, 995–1000, 2011.
[15] Grand. S. M.; Langtry. H. D.; Brogden. R. N.; Drugs, Auckland 37, 801–870, 1989.
[16] Lima. L. S.; Weinert. P. L.; Lemos. S. C.; Sequinel. R.; Pezza. H. R.; Pezza. L.; Spectrochimica Acta Part A 71, 1999–2004, 2009.
[17] Turkevich. J.; Cooper Stevenson. P.; Hillier. J.; Discuss. Faraday Soc 11, 55–75, 1951.
[18] Bahram. M.; Madrakian, T.; Alizadeh. S.; Journal of Pharmaceutical Analysis 7, 411-416, 2017.
[19] Madrakian. T. ; Afkhami A. ; Borazjani M. ; Bahram M. ; Spectrochimica Acta. Part A 52, 1544-1550, 2005.
[20] Miller. J. N.; Miller. J. C.; Sixth ed. ISBN- 978-0-273-73042-2, 2010.
[21] Kiszkiel-Taudul. I.; Starczewska. B.; Microchemical Journal 145, 936–941, 2019.
[22] Perez. C. F.; Olguin. H. J.; Perez. J. F.; Lopez. A. T.; Asseff. I. L; Garcia. C. A.; Journal of Chromatography B 795, 141–144, 2003.
[23] Hare. L.G.; Mitchel. D. S.; Millership. J. S.; Collier. P. S.; McElnay. J. C.; Shields. M. D.; Carson. D. J.; Fair. R.; Journal of Chromatography B 806, 263–269, 2004.
[24] Yakkundi. Sh.; Millership. J.; Collier. P.; Shields. M. D.; McElnay. J.; Journal of Pharmaceutical and Biomedical Analysis 56, 1057– 1063, 2011.
[25] Kokoletsi. M. X.; Kafkala. S.; Tsiaganis. M.; Journal of Pharmaceutical and Biomedical Analysis 38, 763–767, 2005.
_||_