فاکتورهای پیشرفته موثر بر کشت بزرگ مقیاس انواع ریزجلبک و اثرات آن در افزایش بهره وری
محورهای موضوعی : ریزجلبکساسان قبادیان 1 * , ندا سلطانی 2 *
1 - گروه مهندسی محیط زیست، دانشکده مهندسی عمران و محیط زیست، دانشگاه ملی ملایر، ملایر، ایران
2 - گروه میکروبیولوژی نفت، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران، ایران
کلید واژه: محیط کشت, بازیافت آب در کشت, تنش برشی در ریزجلبکها, کشت بزرگ مقیاس, کشت ریزجلبک,
چکیده مقاله :
شاید سخن گفتن در باب کاربری انواع گونه های ریزجلبکی در زمینه های مختلف، رویکردهای جهانی جهت افزایش بهره وری کشت این موجودات و نیل به برتری اقتصادی در کنار منافع عظیم زیست محیطی (مانند تصفیه فاضلاب و تثبیت CO2) گزاف باشد. جهت دستیابی به این افزایش بهره وری، تمرکز بر فاکتورهای مختلف موثر بر کشت در پژوهش های اخیر جهانی مشاهده می شود. در مورد برخی از این فاکتورها نظیر شرایط نوری، دما، غلظت مواد مغذی، میزان CO2 و نظایر آن پژوهش های مختلفی صورت گرفته است. لذا در این مقاله سعی شده با پرهیز از تکرار مقدمات و ذکر مجدد کاربری ها و یا بازگوئی اثرات فاکتورهای مذکور، صرفا پژوهش هائی مرور شوند که بر روی برخی فاکتورهای کمتر آزموده اما با تاثیرات مهم بر افزایش بهرهوری کشت به ویژه در مقیاس بزرگ تمرکز کرده اند. لذا در ابتدا محیط های مختلف کشت شامل آب شیرین، آب دریا و فاضلاب جهت به کارگیری در کشت انبوه تشریح و مقایسه شده و گونه های برتر هریک از محیط ها معرفی شده اند و سپس روشهای مختلف کشت شامل فتواتوتروفیک، هتروتروفیک، میکسوترفیک و فتوهتروتروفیک مقایسه شده اند. به استفاده مجدد از آب بازیافتی فرآیند کشت ریزجلبک ها جهت کاهش هزینه های تصفیه و پمپاژ و چالشهای مرتبط با آن نگاهی شده و در انتها اثر تنش ها (که بواسطه تجهیزات بکارگرفته شده و در فرآیندهای کشت بزرگ مقیاس از دغدغه های اصلی است) بر روی بهرهوری کشت و راهکارهای کاهش این اثرات مورد نظر قرار گرفته است.
Perhaps talking about the use of microalgae species in various fields, global approaches to increase the productivity and شchieving economic superiority alongside لreat environmental benefits وis superfluous.Some of these factors such as illumination conditions, temperature, nutrient concentration, CO2 content and the like have been researched befor. Therefore, in this article, simply review researches that focuses on some less tested factors but with significant effects on increasing culture productivity, especially on a large scale.Therefore, at first, different cultivation environments including fresh water, sea water and sewage for use in mass cultivation are described and compared and the superior species of each environment are introduced. Then different culture methods including photototrophic, heterotrophic, mixotrophic and photothetrophic were compare. Reuse of recycled water for microalgae cultivation process to reduce treatment and pumping costs and related challenges is considered. Finally, the effect of shear stresses (coused by equipments and is a major concern in large-scale cultivation) on cultivation productivity and ways to reduce these effects is considered.
Abdel-Raouf, N., Al-Homaidan, A. and Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi J Biology Science, 19: 257–275.
Al Hattab, M., Ghaly, A. and Hammouda, A. (2015). Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications, 5(2):1000154.
Álvarez-Díaz, P., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. and Perales, J. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24:477-485.
Babu, A. G., Wu, X., Kabra, A. N. and Kim, D. P. (2017). Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Research, 23:178-185.
Bernaerts, T. M., Panozzo, A., Doumen, V., Foubert, I., Gheysen, L., Goiris, K. and Van Loey, A. M. (2017). Microalgal biomass as a (multi) functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Research, 25:452-463.
Chalmers, J. J. (2015). Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Current Opinion in Chemical Engineering, 10:94-102.
Che, R., Ding, K., Huang, L., Zhao, P., Xu, J.-W., Li, T. and Yu, X. (2016). Enhancing biomass and oil accumulation of Monoraphidium sp. FXY-10 by combined fulvic acid and two-step cultivation. Journal of the Taiwan Institute of Chemical Engineers, 67:161-165.
Cheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J. S. and Lee, D. J. (2016). Cultivation in wastewaters for energy: a microalgae platform. Applied Energy, 179:609-625.
Cheirsilp, B. and Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110:510-516.
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D. J.and Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1):71-81.
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q. and Cheng, Y. (2010). Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2(4):1-30.
Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C. and Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91:332-344.
Chisti, Y. (2000). Animal-cell damage in sparged bioreactors. Trends in biotechnology, 18(10): 420-432.
Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T.C., Ong, S. C. and Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9):3389-3396.
Chojnacka, K. and Marquez-Rocha, F. J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1):21-34.
Contreras, A., García, F., Molina, E. and Merchuk, J. (1998). Interaction between CO2‐mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnology and Bioengineering, 60(3):317-325.
Duong, V.T., Li, Y., Nowak, E. and Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5(6):1835-1849.
Gallardo‐Rodríguez, J., García‐Camacho, F., Sánchez‐Mirón, A., López‐Rosales, L., Chisti, Y. and Molina‐Grima, E. (2012). Shear‐induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga. Biotechnology Progress, 28(2):467-473.
Gallardo Rodríguez, J., Sánchez Mirón, A., García Camacho, F., García, C., Belarbi, E., Chisti, Y. and Molina Grima, E. (2011). Carboxymethyl cellulose and Pluronic F68 protect the dinoflagellate Protoceratium reticulatum against shear-associated damage. Bioprocess and Biosystems Engineering, 34(1):3-12.
Ghobadian, S., Ganjidoust, H., Ayati, B. and Soltani, N. (2018). Chlorophyll and Carotenoid Optimization of Spirulina Biomass by Innovative Photobioreactor. Modares Journal of Biotechnology, 9(3):483-494.
Ghobadian, S., Ganjidoust, H., Ayati, B. and Soltani, N. (2018). The innovative engineered photobioreactor to optimize the amount of microalgae Spirulina biomass. Nova Biol Repert, 5(1):13-25.
Gonçalves, A. L., Pires, J. C. and Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24:403-415.
Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P. and Silva, C. M. (2016). Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Research, 16:167-176.
Greene, C.H., Huntley, M.E., Archibald, I., Gerber, L.N., Sills, D.L., Granados, J. and Bidigare, R.R. (2016). Marine microalgae: climate, energy, and food security from the sea. Oceanography, 29(4):10-15.
Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels, 7(1):1-12.
Hodaifa, G., Martínez, M. E., Órpez, R. and Sánchez, S. (2010). Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive-mill wastewater. Chemical Engineering and Processing: Process Intensification, 49(11):1161-1168.
Huang, G., Chen, F., Wei, D., Zhang, X. and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1):38-46.
Juhl, A. R., Velazquez, V. and Latz, M.I. (2000). Effect of growth conditions on flow‐induced inhibition of population growth of a red‐tide dinoflagellate. Limnology and Oceanography, 45(4):905-915.
Kalana, U., Kalpage, C. and Yatigammana, S. (2016). Evaluation of the suitable environmental conditions for selected freshwater microalgae species with the potential for the production of biodiesel. Ceylon Journal of Science, 45(3).
Kaspar, H.F., Keys, E.F., King, N., Smith, K.F., Kesarcodi-Watson, A. and Miller, M.R. (2014). Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 420:1-9.
Kightlinger, W., Chen, K., Pourmir, A., Crunkleton, D. W., Price, G. L.and Johannes, T. W. (2014). Production and characterization of algae extract from Chlamydomonas reinhardtii. Electronic Journal of Biotechnology, 17(1):3-3.
Kilham, S., Kreeger, D., Goulden, C. and Lynn, S. (1997). Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology, 38(3):591-596.
Kim, B.-H., Kang, Z., Ramanan, R., Choi, J. E., Cho, D. H., Oh, H. M. and Kim, H.-S. (2014). Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. Journal of Microbiology and Biotechnology, 24(8):1123-1132.
Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H. and Xia, C.-G. (2012). Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3):360-367.
Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S. and Yang, J. W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51:875-885.
Lecina, M., Nadal, G., Solà, C., Prat, J. and Cairó, J.J. (2016). Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess. Bioresource Technology, 216:211-218.
Lee, S.-J., Go, S., Jeong, G.-T. and Kim, S.-K. (2011). Oil production from five marine microalgae for the production of biodiesel. Biotechnology and Bioprocess Engineering, 16(3):561-566.
Leupold, M., Hindersin, S., Gust, G., Kerner, M. and Hanelt, D. (2013). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. Journal of Applied Phycology, 25(2):485-495.
Li, J., Li, C., Lan, C. Q. and Liao, D. (2018). Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microbial Cell Factories, 17(1):1-10.
Li, T., Xu, J., Gao, B., Xiang, W., Li, A. and Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16:481-491.
Liang, Y., Sarkany, N. and Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7):1043-1049.
Liu, J. and Hu, Q. (2013). Chlorella: industrial production of cell mass and chemicals. Handbook of microalgal culture: Applied Phycology and Biotechnology, 327-338.
Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T. and Zhang, C. (2013). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(1):1-11.
Loftus, S. E. and Johnson, Z. I. (2017). Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Research, 24:154-166.
Mata, T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1):217-232.
Michaels, J.D., Petersen, J.F., Mclntire, L.V. and Papoutsakis, E.T. (1991). Protection mechanisms of freely suspended animal cells (CRL 8018) from fluid‐mechanical injury. Viscometric and bioreactor studies using serum, pluronic F68 and polyethylene glycol. Biotechnology and Bioengineering, 38(2):169-180.
Michels, M. H., van der Goot, A.J., Norsker, N. H. and Wijffels, R. H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess and Biosystems Engineering, 33(8):921-927.
Mirón, A.S., Garcıa, M. C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3):287-297.
Mitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. and Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Applied microbiology and biotechnology, 42(5): 744-749.
Moed, N.M., Lee, D.J. and Chang, J.S. (2015). Struvite as alternative nutrient source for cultivation of microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 56:73-76.
Nienow, A. (1998). Hydrodynamics of stirred bioreactors.
Nwoba, E.G., Ayre, J.M., Moheimani, N.R., Ubi, B.E. and Ogbonna, J.C. (2016). Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Research, 17:268-276.
Ogbonna, J.C., Tomiyama, S. and Tanaka, H. (1999). Production of α-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis Progress in Industrial Microbiology, 35: 213-221, Elsevier.
Otero, A. and Fábregas, J. (1997). Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture, 159(1-2): 111-123.
Prajapati, V.D., Jani, G.K., Moradiya, N.G., Randeria, N.P., Nagar, B.J., Naikwadi, N.N. and Variya, B.C. (2013). Galactomannan: a versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60:83-92.
Ramírez-Duque, J.L., Marín-Quintero, D.A. and García-Pulido, C.H. (2012). Evaluation of microalgal mortality in a centrifugal pump of a tubular photobioreactor. Ingeniería y Universidad, 16(2):333-347.
Shu, C.H. and Tsai, C.C. (2016). Enhancing oil accumulation of a mixed culture of Chlorella sp. and Saccharomyces cerevisiae using fish waste hydrolysate. Journal of the Taiwan Institute of Chemical Engineers, 67:377-384.
Shu, C.H., Tsai, C.C., Chen, K.Y., Liao, W.H. and Huang, H.C. (2013). Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 44(6): 936-942.
Silva, H.J., Cortifas, T. and Ertola, R.J. (1987). Effect of hydrodynamic stress on Dunaliella growth. Journal of Chemical Technology and Biotechnology, 40(1):41-49.
Sing, S.F., Isdepsky, A., Borowitzka, M. and Lewis, D. (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresource Technology, 161:47-54.
Siron, R., Giusti, G. and Berland, B. (1989). Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Marine Ecology Progress Series, 95-100.
Sobczuk, T.M., Camacho, F.G., Grima, E.M. and Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 28(4):243-250.
Stockenreiter, M., Haupt, F., Seppälä, J., Tamminen, T. and Spilling, K. (2016). Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Research, 15:77-82.
Suh, I.S. and Lee, C.G. (2003). Photobioreactor engineering: design and performance. Biotechnology and Bioprocess Engineering, 8(6):313-321.
Wang, C. and Lan, C. Q. (2018). Effects of shear stress on microalgae–A review. Biotechnology Advances, 36(4):986-1002.
Wei, N., Quarterman, J. and Jin, Y.-S. (2013). Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 31(2):70-77.
White, R.L., and Ryan, R.A. (2015). Long-term cultivation of algae in open-raceway ponds: lessons from the field. Industrial Biotechnology, 11(4):213-220.
Widjaja, A., Chien, C.-C. and Ju, Y.H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1):13-20.
Wu, J., Liu, J., Lin, L., Zhang, C., Li, A., Zhu, Y. and Zhang, Y. (2015). Evaluation of several flocculants for flocculating microalgae. Bioresource Technology, 197:495-501.
Xiong, W., Li, X., Xiang, J. and Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1):29-36.
Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4):499-507.
Yamaguchi, K., Nakano, H., Murakami, M., Konosu, S., Nakayama, O., Kanda, M. and Iwamoto, H. (1987). Lipid composition of a green alga, Botryococcus braunii. Agricultural and Biological Chemistry, 51(2):493-498.
Yen, H.W., Hsu, C.Y. and Chen, P.W. (2016). An integrated system of autotrophic Chlorella vulgaris cultivation using CO2 from the aerobic cultivation process of Rhodotorula glutinis. Journal of the Taiwan Institute of Chemical Engineers, 62:158-161.
Yu, C.C., Chen, H.W., Chen, M.J., Chang, Y.C., Chien, S.C., Kuo, Y.H. and Yu, H.H. (2010). Chemical composition and bioactivities of the marine alga Isochrysis galbana from Taiwan. Natural Product Communications, 5(12):1934578X1000501222.
Zhao, X., Jarboe, L. and Wen, Z. (2016). Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity. Applied Microbiology and Biotechnology, 100(9):4241-4251.
_||_
Abdel-Raouf, N., Al-Homaidan, A. and Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi J Biology Science, 19: 257–275.
Al Hattab, M., Ghaly, A. and Hammouda, A. (2015). Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications, 5(2):1000154.
Álvarez-Díaz, P., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. and Perales, J. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24:477-485.
Babu, A. G., Wu, X., Kabra, A. N. and Kim, D. P. (2017). Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation. Algal Research, 23:178-185.
Bernaerts, T. M., Panozzo, A., Doumen, V., Foubert, I., Gheysen, L., Goiris, K. and Van Loey, A. M. (2017). Microalgal biomass as a (multi) functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Research, 25:452-463.
Chalmers, J. J. (2015). Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Current Opinion in Chemical Engineering, 10:94-102.
Che, R., Ding, K., Huang, L., Zhao, P., Xu, J.-W., Li, T. and Yu, X. (2016). Enhancing biomass and oil accumulation of Monoraphidium sp. FXY-10 by combined fulvic acid and two-step cultivation. Journal of the Taiwan Institute of Chemical Engineers, 67:161-165.
Cheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J. S. and Lee, D. J. (2016). Cultivation in wastewaters for energy: a microalgae platform. Applied Energy, 179:609-625.
Cheirsilp, B. and Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110:510-516.
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D. J.and Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1):71-81.
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q. and Cheng, Y. (2010). Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2(4):1-30.
Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C. and Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91:332-344.
Chisti, Y. (2000). Animal-cell damage in sparged bioreactors. Trends in biotechnology, 18(10): 420-432.
Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T.C., Ong, S. C. and Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9):3389-3396.
Chojnacka, K. and Marquez-Rocha, F. J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1):21-34.
Contreras, A., García, F., Molina, E. and Merchuk, J. (1998). Interaction between CO2‐mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnology and Bioengineering, 60(3):317-325.
Duong, V.T., Li, Y., Nowak, E. and Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5(6):1835-1849.
Gallardo‐Rodríguez, J., García‐Camacho, F., Sánchez‐Mirón, A., López‐Rosales, L., Chisti, Y. and Molina‐Grima, E. (2012). Shear‐induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga. Biotechnology Progress, 28(2):467-473.
Gallardo Rodríguez, J., Sánchez Mirón, A., García Camacho, F., García, C., Belarbi, E., Chisti, Y. and Molina Grima, E. (2011). Carboxymethyl cellulose and Pluronic F68 protect the dinoflagellate Protoceratium reticulatum against shear-associated damage. Bioprocess and Biosystems Engineering, 34(1):3-12.
Ghobadian, S., Ganjidoust, H., Ayati, B. and Soltani, N. (2018). Chlorophyll and Carotenoid Optimization of Spirulina Biomass by Innovative Photobioreactor. Modares Journal of Biotechnology, 9(3):483-494.
Ghobadian, S., Ganjidoust, H., Ayati, B. and Soltani, N. (2018). The innovative engineered photobioreactor to optimize the amount of microalgae Spirulina biomass. Nova Biol Repert, 5(1):13-25.
Gonçalves, A. L., Pires, J. C. and Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24:403-415.
Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P. and Silva, C. M. (2016). Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Research, 16:167-176.
Greene, C.H., Huntley, M.E., Archibald, I., Gerber, L.N., Sills, D.L., Granados, J. and Bidigare, R.R. (2016). Marine microalgae: climate, energy, and food security from the sea. Oceanography, 29(4):10-15.
Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels, 7(1):1-12.
Hodaifa, G., Martínez, M. E., Órpez, R. and Sánchez, S. (2010). Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive-mill wastewater. Chemical Engineering and Processing: Process Intensification, 49(11):1161-1168.
Huang, G., Chen, F., Wei, D., Zhang, X. and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1):38-46.
Juhl, A. R., Velazquez, V. and Latz, M.I. (2000). Effect of growth conditions on flow‐induced inhibition of population growth of a red‐tide dinoflagellate. Limnology and Oceanography, 45(4):905-915.
Kalana, U., Kalpage, C. and Yatigammana, S. (2016). Evaluation of the suitable environmental conditions for selected freshwater microalgae species with the potential for the production of biodiesel. Ceylon Journal of Science, 45(3).
Kaspar, H.F., Keys, E.F., King, N., Smith, K.F., Kesarcodi-Watson, A. and Miller, M.R. (2014). Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 420:1-9.
Kightlinger, W., Chen, K., Pourmir, A., Crunkleton, D. W., Price, G. L.and Johannes, T. W. (2014). Production and characterization of algae extract from Chlamydomonas reinhardtii. Electronic Journal of Biotechnology, 17(1):3-3.
Kilham, S., Kreeger, D., Goulden, C. and Lynn, S. (1997). Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology, 38(3):591-596.
Kim, B.-H., Kang, Z., Ramanan, R., Choi, J. E., Cho, D. H., Oh, H. M. and Kim, H.-S. (2014). Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. Journal of Microbiology and Biotechnology, 24(8):1123-1132.
Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H. and Xia, C.-G. (2012). Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 43(3):360-367.
Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S. and Yang, J. W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51:875-885.
Lecina, M., Nadal, G., Solà, C., Prat, J. and Cairó, J.J. (2016). Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess. Bioresource Technology, 216:211-218.
Lee, S.-J., Go, S., Jeong, G.-T. and Kim, S.-K. (2011). Oil production from five marine microalgae for the production of biodiesel. Biotechnology and Bioprocess Engineering, 16(3):561-566.
Leupold, M., Hindersin, S., Gust, G., Kerner, M. and Hanelt, D. (2013). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. Journal of Applied Phycology, 25(2):485-495.
Li, J., Li, C., Lan, C. Q. and Liao, D. (2018). Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microbial Cell Factories, 17(1):1-10.
Li, T., Xu, J., Gao, B., Xiang, W., Li, A. and Zhang, C. (2016). Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16:481-491.
Liang, Y., Sarkany, N. and Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7):1043-1049.
Liu, J. and Hu, Q. (2013). Chlorella: industrial production of cell mass and chemicals. Handbook of microalgal culture: Applied Phycology and Biotechnology, 327-338.
Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T. and Zhang, C. (2013). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(1):1-11.
Loftus, S. E. and Johnson, Z. I. (2017). Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Research, 24:154-166.
Mata, T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1):217-232.
Michaels, J.D., Petersen, J.F., Mclntire, L.V. and Papoutsakis, E.T. (1991). Protection mechanisms of freely suspended animal cells (CRL 8018) from fluid‐mechanical injury. Viscometric and bioreactor studies using serum, pluronic F68 and polyethylene glycol. Biotechnology and Bioengineering, 38(2):169-180.
Michels, M. H., van der Goot, A.J., Norsker, N. H. and Wijffels, R. H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess and Biosystems Engineering, 33(8):921-927.
Mirón, A.S., Garcıa, M. C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. and Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3):287-297.
Mitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. and Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Applied microbiology and biotechnology, 42(5): 744-749.
Moed, N.M., Lee, D.J. and Chang, J.S. (2015). Struvite as alternative nutrient source for cultivation of microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 56:73-76.
Nienow, A. (1998). Hydrodynamics of stirred bioreactors.
Nwoba, E.G., Ayre, J.M., Moheimani, N.R., Ubi, B.E. and Ogbonna, J.C. (2016). Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Research, 17:268-276.
Ogbonna, J.C., Tomiyama, S. and Tanaka, H. (1999). Production of α-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis Progress in Industrial Microbiology, 35: 213-221, Elsevier.
Otero, A. and Fábregas, J. (1997). Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture, 159(1-2): 111-123.
Prajapati, V.D., Jani, G.K., Moradiya, N.G., Randeria, N.P., Nagar, B.J., Naikwadi, N.N. and Variya, B.C. (2013). Galactomannan: a versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60:83-92.
Ramírez-Duque, J.L., Marín-Quintero, D.A. and García-Pulido, C.H. (2012). Evaluation of microalgal mortality in a centrifugal pump of a tubular photobioreactor. Ingeniería y Universidad, 16(2):333-347.
Shu, C.H. and Tsai, C.C. (2016). Enhancing oil accumulation of a mixed culture of Chlorella sp. and Saccharomyces cerevisiae using fish waste hydrolysate. Journal of the Taiwan Institute of Chemical Engineers, 67:377-384.
Shu, C.H., Tsai, C.C., Chen, K.Y., Liao, W.H. and Huang, H.C. (2013). Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 44(6): 936-942.
Silva, H.J., Cortifas, T. and Ertola, R.J. (1987). Effect of hydrodynamic stress on Dunaliella growth. Journal of Chemical Technology and Biotechnology, 40(1):41-49.
Sing, S.F., Isdepsky, A., Borowitzka, M. and Lewis, D. (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresource Technology, 161:47-54.
Siron, R., Giusti, G. and Berland, B. (1989). Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Marine Ecology Progress Series, 95-100.
Sobczuk, T.M., Camacho, F.G., Grima, E.M. and Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 28(4):243-250.
Stockenreiter, M., Haupt, F., Seppälä, J., Tamminen, T. and Spilling, K. (2016). Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Research, 15:77-82.
Suh, I.S. and Lee, C.G. (2003). Photobioreactor engineering: design and performance. Biotechnology and Bioprocess Engineering, 8(6):313-321.
Wang, C. and Lan, C. Q. (2018). Effects of shear stress on microalgae–A review. Biotechnology Advances, 36(4):986-1002.
Wei, N., Quarterman, J. and Jin, Y.-S. (2013). Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 31(2):70-77.
White, R.L., and Ryan, R.A. (2015). Long-term cultivation of algae in open-raceway ponds: lessons from the field. Industrial Biotechnology, 11(4):213-220.
Widjaja, A., Chien, C.-C. and Ju, Y.H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1):13-20.
Wu, J., Liu, J., Lin, L., Zhang, C., Li, A., Zhu, Y. and Zhang, Y. (2015). Evaluation of several flocculants for flocculating microalgae. Bioresource Technology, 197:495-501.
Xiong, W., Li, X., Xiang, J. and Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1):29-36.
Xu, H., Miao, X. and Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4):499-507.
Yamaguchi, K., Nakano, H., Murakami, M., Konosu, S., Nakayama, O., Kanda, M. and Iwamoto, H. (1987). Lipid composition of a green alga, Botryococcus braunii. Agricultural and Biological Chemistry, 51(2):493-498.
Yen, H.W., Hsu, C.Y. and Chen, P.W. (2016). An integrated system of autotrophic Chlorella vulgaris cultivation using CO2 from the aerobic cultivation process of Rhodotorula glutinis. Journal of the Taiwan Institute of Chemical Engineers, 62:158-161.
Yu, C.C., Chen, H.W., Chen, M.J., Chang, Y.C., Chien, S.C., Kuo, Y.H. and Yu, H.H. (2010). Chemical composition and bioactivities of the marine alga Isochrysis galbana from Taiwan. Natural Product Communications, 5(12):1934578X1000501222.
Zhao, X., Jarboe, L. and Wen, Z. (2016). Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity. Applied Microbiology and Biotechnology, 100(9):4241-4251.