اثر مثبت آلومینیوم در کاهش سمیت مس بر فعالیت نیترات ردوکتاز و آنزیمهای آنتی اکسیدانی کلرلاولگاریس (Chlorella vulgaris Beijernick)
محورهای موضوعی : ژنتیکآرین ساطعی 1 , شادمان شکروی 2 , نرگس ناطقی 3 *
1 - گروه زیست شناسی دانشگاه آزاد اسلامی واحد گرگان
2 - گروه زیست شناسی دانشگاه آزاد اسلامی واحد گرگان
3 - گروه زیست شناسی دانشگاه آزاد اسلامی واحد گرگان
کلید واژه: آلومینیوم, کلرلا ولگاریس, نیترات ردوکتاز, آنزیمهای آنتی اکسیدانی, سمیت مس,
چکیده مقاله :
کلرلا ولگاریس در محیط کشت BG -11 با 5 غلظت مس (10، 20، 30، 40، 50 میکرومولار) بدون آلومینیوم و با آلومینیوم (300میکرومولار) و 1/7 pH به مدت 10 روز در 20 ساعت روشنایی و 4 ساعت تاریکی رشد داده شد. در این تحقیق اثرتیمارهای مختلف روی فعالیت آنزیمهای پراکسیداز، کاتالاز،آسکوربات پراکسیداز و سوپر اکسیددیسموتاز، نیترات ردوکتاز مورد ارزیابی قرار گرفت. افزایش غلظت مس باعث افزایش فعالیت آنزیمهای آنتی اکسیدانی گردید. در حضور آلومینیوم فعالیت کاتالاز در تمامی تیمارهای مس نسبت به شاهد کاهش معنیداری نشان داد، اما فعالیت پراکسیداز وآسکوربات پراکسیداز در تیمار 20 میکرومولارکاهش معنیداری نسبت به شاهد نشان داد. همچنین کاهش معنیداری در فعالیت آنزیمهای کاتالاز، پراکسیداز وآسکوربات پراکسیداز در 20 میکرومولارمس با آلومینیوم نسبت به تیمار 20 میکرومولار مس بدون آلومینیوم مشاهده گردید. نتایج نشان داد اثرغلظتهای مختلف مس بدون آلومینیوم برفعالیت نیترات ردوکتاز معنیدار نمیباشد. در تیمارهای مس وآلومینیوم بیشترین فعالیت آنزیم نیترات ردوکتاز در غلظت 40 میکرومولار مشاهده گردید که این افزایش نسبت به تیمار 20 میکرومولار معنیدار و نسبت به سایر تیمارها و شاهد معنیدار نمیباشد. افزایش بعضی آنزیمهای آنتی اکسیدانی در حضور آلومینیوم منجر به کاهش سمیت مس و افزایش رشد جلبک گردید.
Chlorella vulgaris beijernick was grown in medium BG-11 with 5 concentrations of copper (10, 20, 30, 40, 50μM) without aluminum or with aluminum (300μM) and pH 7.1 for 10 days in 20 hours light and 4 hours darkness. In this study, the effect of different treatments on the activity of peroxidase, catalase, Ascorbat peroxidase and superoxid dismotase and nitrate reductase, in vivo, was evaluated. Increase of copper concentration caused increase in activity of antioxidant enzymes. Catalase activity in the presence of aluminum in all copper treatments showed a significant reduction, but peroxidase and Ascorbat peroxidase activities in 20μM treatments decreased significantly when compared with control. The significant decrease in the activity of catalase, peroxidase and Ascorbat peroxidase activity, in 20μM copper with aluminum comparing with 20 μM copper without aluminum was also observed. Results also showed that the effect of different concentrations of copper without aluminum on nitrate reductase activity was not significant and most nitrate reductase activity in treatments with copper and aluminum was observed in 40μM that was significant when compared with 20μM treatment and was not significant when compared with other treatments or control. It is concluded that the presence of aluminum, by increasing some of antioxidant enzymes activities, lead to reduce of copper toxicity and algae growth increases.
ساطعی، آ.، و سروش نسب، ل. (1387). بررسی برخی از پاسخهای فیزیولوژی جلبک کلرلاولگاریس به اضافه کردن آلومینیوم در محیط کشت. پایان نامه کارشناسی ارشد. دانشگاه آزاد اسلامی واحد گرگان
_||_
Arrigoni, O. (1992). Ascorbate system in plant development.J. Biomember, 26: 407-419.
Awasthi, M. (2005).Nitrate reductase activity: A solution to nitrate problems tested in free and Immobilized algal cells in presence of heavy metals. J. Environ, Vol. 2, No. 3, pp. 201-206
Baos, R., Garcı´a-Villada, L., Agrelo, M., Lopez Rodas, V., Hiraldo, F, Costas, E. (2002). Short-term adaptation of microalgae inhighly stressful environments: an experimental model analyzing there sistance of Scenedesmus intermedius (Chlorophyceae) to the heavy metal smixture from the Aznalcollarmine spill. Eur.J.Phycol. 37, 593–600.
Chance, B. and Maehly, C. (1995). Assay catalase and peroxidase methods enzymol. 11: 764-775
De Vos, C.H.R, H. Schat, M.A.M. De Waal, R. Vooijs, and W.H.O. Ernst. (1991). Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol. Plant. 82: 523-528
Gadd, G.M., Griffiths, A.J. (1978). Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317
Ginnopolitis, N.C. and Ries, S.K. (1977). Superoxide dismutase occurrence in higher plants. Plant Phys.,59: 309-314.
Gledhill, M., Nimmo, M., Hill, S.J., Brown, M.T. (1997). The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J. Phycol. 33 (1), 2–11.
Halliwell, B., Gutteridge, J.M.C.(1999). Free Radicals in Biology and Medicine, third ed. Oxford University Press, New York
Hassal, K. (1963). Uptake of copper and its physiological effects on Chlorella vulgaris. Physiol Plant 16:323–332
Jusu,S.A, Kong,F.X, Qing,B.G, Tan,J.K, Han., X.B, (2004). The course biochemical response of green algae Scenedesmus obliqus PH. Environ Contam. Toxicol.73:1001-1008
Koroi, A. (1989). Gel electrophores tisch and spectrophotometris echoe unter unchangen zomeinfiuss der temperature auf straktur and aktritat der amylase and peroxidase isoenzyme, Physiol Veg.20:15-23
Lobban, C.S., Harrison, P.J. (1994). Seaweed Ecology and Physiology.Cambridge University Press, NewYork.
Luna, C.M., Gonzalez, C.A. and Trippi, V.S. (1994). Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15.
Mallick,N.(2004).Copper-induced oxidative stress in the chlorophyce an microalga Chlorella vulgaris: response of the antioxidant system. J. Plant Physiol.161, 591–597.
McBrien, D.C., Hassal, K. (1967). The effect of toxic doses of copper upon respiration, photosynthesis, and growth of Chlorella vulgaris. Physiol Plant 20:113–117
Morris, I. and Syrett, P.J. (1963). The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Mikrobiol. 47: 32-41.
Okamoto, O.K., Colepicolo, P. (1998). Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp Biochem pHysiol C pHarmacol Toxicol endocrinol. 119:67-73.
Okamoto, O.K., Pinto, E., Latorre, L.R., Bechara, E.J.H., Colepicolo, P.(2001). Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch. Environ. Contam. Toxicol. 40, 18–24
Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D., Colepicolo, P.(2003). Heavy metal-induced oxidative stress in algae. J. Phycol. 39, 1008–1018
Rai, L., Gaur, J.P., Kumar, H.D.(1981). Phycology and heavy metal pollution. Biol. Rev. 56, 99–151
Rijstenbil, J.W., Gerringa,L.J.A.(2002).Interactions of algalligands,metal complexation and availability ,and cell responses of the diatom Ditylum brightwellii with agradual increase in copper.Aquat. Toxicol. 56, 115–131
Sabatini, S.E.,Juarez, A.B., Eppis,M.R., Bianchi , L., Luquet, C.M., Molina, M.C.R.,(2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to Copper. Ecotoxicology and Environmental Safety.doi: 10.1016.
Stauber, J.L. and Florence, T.M. (1987). Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology. 94: 511- 519
Sym, G.L. (1984). Optimisation of the invivo assay conditions for nitrate reductase in barly. J. Sci. Food. Agri, 35: 725-730.
Vymazal, J. (1995). Algae and element cycling in wetlands. Lewis Publ., Boca Raton
Yan, H., Pan, G. (2002). Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere 49, 471–476.