مطالعه خصوصیات مورفوفیزیولوژیکی و بیوشیمیایی ریشه ارقام عدس (Lens culinaris Medik) در پاسخ به تنش رطوبتی
محورهای موضوعی : ژنتیکراهله احمدپور 1 , سعید رضا حسین زاده 2 , سمیه چاشیانی 3
1 - گروه زیستشناسی، دانشکده علوم، دانشگاه صنعتی خاتمالانبیاء، بهبهان، ایران
2 - گروه زیستشناسی، دانشکده علوم، دانشگاه صنعتی خاتمالانبیاء، بهبهان، ایران
3 - گروه ریاضی و آمار، دانشکده علوم پایه، دانشگاه صنعتی خاتمالانبیاء بهبهان، ایران
کلید واژه: تنش آبی, حبوبات, فعالیت آنتی اکسیدانی, مورفولوژی ریشه,
چکیده مقاله :
واکنش ریشه گیاهان نقش بهسزایی در تحمل به تنش و استفاده بهینه از رطوبت ذخیره شده خاک دارد. بررسی مهمترین شاخصهای مورفوفیزیولوژیک و بیوشیمیایی ریشه ارقام گیاهان مختلف میتواند پارامتر مناسبی جهت گزینش ارقام متحمل به تنش رطوبتی باشد. این پژوهش در در شرایط گلدانی و در محیط باز به صورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار انجام شد. تیمارهای آزمایش شامل 4 رقم پرکاربرد گیاه عدس (گچساران، کیمیا، زیبا و رباط) و 4 سطح تنش رطوبتی 25، 50، 75 و 100 درصد ظرفیت زراعی بود. نتایج نشان داد که اثرات متقابل رقم و تنش رطوبتی بر تمام صفات مورد بررسی معنیدار بود. ارقام رباط و گچساران در بسیاری از صفات نظیر طول، وزن خشک و سطح ریشه، غلظت پتاسیم و کلسیم، محتوای پرولین و پروتئین محلول، فعالیت آنزیم پراکسیداز و سوپراکسید دیسموتاز ریشه نسبت به ارقام کیمیا و زیبا در شرایط تنش شدید برتری محسوسی داشتند. رقم کیمیا نسبت به سایر ارقام مورد بررسی در تمامی سطوح تنش، کمترین ویژگیهای مورفوفیزیولوژیک و بیوشیمیایی مورد سنجش در ریشه را داشت. نتایج این بررسی نشان داد که ارقام رباط و گچساران با استفاده از مکانیسمهای کارامد ریشه در تحمل به تنش رطوبتی نظیر فعالیت بیشتر آنزیمهای آنتیاکسیدان، میزان بالاتری از پرولین و پروتئین، افزایش طول و سطح ریشه و میزان جذب بیشتر پتاسیم و کلسیم نسبت به ارقام کیمیا و زیبا، کمتر تحت تأثیر اثرات منفی تنش رطوبتی قرار گرفتند. باتوجه به نتایج این پژوهش ارقام رباط و گچساران به عنوان ارقام متحمل جهت کشت در شرایط کمآبی معرفی میگردد.
The responses of plant roots play an important role in stress tolerance and optimal use of the moisture stored in the soil. Study of the most important morpho-physiological and biochemical parameters of roots can be an appropriate approach for selection of the cultivars tolerant to moisture stress. This study was conducted in pots and as a factorial completely randomized design in three replications.Treatments consisted of lentil cultivars (Gachsaran, Kimiya, Ziba, and Robat) and moisture stress at four levels: 25%, 50%, 75% and 100% field capacity. Results showed that the interactions between lentil cultivars and water stress on all root traits were significant. Under severe moisture stress, Rabat and Gachsaran cultivars were significantly superior to the Kimia and Ziba cultivars in most of the studied traits such as root length, root area, concentration of K, concentration of Ca, proline content, protein content, POX activity, and SOD activity. Kimia cultivar compared to other cultivars in all stress levels had the lowest root morpho-physiological and biochemical characteristics. The findings of this study showed that in comparison with other cultivars, Robat and Gachsaran were affected less under moisture stress, by means of applying effective stress-tolerance mechanisms such as more antioxidant enzyme activity, more root proline and protein contents, increased root length and area, more K and Ca absorption. According to the results of this study, Robat and Gachsaran cultivars are introduced as tolerant cultivars for cultivation under moisture stress.
Abrishamchi, P., Ganjeali, A. and Sakeni, H. (2012). Evaluation of morphological traits, proline content and antioxidant enzymes activity in chickpea genotypes (Cicer arietinum L.) under drought stress. Iranian Journal Pulses Research .3 (2): 17-30. (In Persian with English abstract).
Ahmadpour, R.,Hosseinzadeh,S.R. and Armand, N. (2016). Evaluation of methanol role in reducing the negative effects of water deficit stress in lentil (Lens culinaris Medik.). Iranian Journal Plant Process and Function 5 (17): 1-13. (In Persian with English abstract).
Ahmadpour, R. and Hosseinzadeh, S.R. (2017). Change in growth and photosynthetic parameters of Lentil (Lens culinaris Medik.) in response to methanol foliar application and drought stress. International Journal Agriculture and Biosciences. 6(1): 7-12.
Armand, N., Amiri, H. and Ismaili, A. (2016). Interaction of methanol spray and water-deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Journal of Photochemistry and Photobiology. 92(1):102-110.
Arndt, S.K.K., Clifford, S.C., Wanek, W., Jones, H.G. and Popp, M. (2001). Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology. 21: 705-715.
Bahadoran, M., Abrishamchi, P., Ejtehadi, H. and Ghassemzadeh, F. (2015). Study on some physiological characteristics of Salsola richteri in drought condition in the two desert regions of the South Khorasan province. Plant Biology. 7(24): 1-14. (In Persian with English abstract).
Bates, L.S., Waldern R.P. and Teare I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil Environment. 39: 205–207.
Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase: improved assays and applicable to acryl amide gels. Annual Review of Biochemistry . 44: 276-287.
Beyk Khurmizi, A., Ganjeali, A., Abrishamchi, P. and Parsa, M. (2013). Interactions of vermicomopst and salinity on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) seedlings. Iranian Journal of Pulses Research. 4(1): 81-98. (In Persian with English abstract).
Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Plant Nutrition Soil Science. 168: 521-530.
Chandlee, J.M. and Scandalios, J.G. (1984). Analysis of variants affecting the catalase development program in Maize scutellum. Apply Genetic 69: 71–77.
Chapman, H.D. and Pratt, P.F. (1982). Method of Analysis for Soil, Plants and Water, Chapman Publisher: Riverside, CA.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29: 185-212.
Ganjeali, A. and Bagheri, A. (2011). Evaluation of morphological characteristics of root chickpea (Cicer arietinum L.) in response to drought stress. Pulses Research. 1(2): 101-110. (In Persian with English abstract).
Ganjeali, A., Kaffi, M. and Sabet Teimouri, M. (2010). Evaluation of root and shoot physiological indices in chickpea (Cicer arietinum L.) under drought stress. Environmental Stress Crop Science. 3(1): 35-45. (In Persian with English abstract).
Ghaderi, N., Normohammadi, S. and Javadi, T. (2015). Morpho-physiological responses of strawberry (Fragaria ananassa) to exogenous salicylic acid application under drought stress. Journal of Agricaltural and Technology. 17 (1):167-178.
Gruber, B.D., Giehl, R.F.H., Friedel, S. and Wirén, N.V. (2013). Plasticity of the Arabidopsis Root System under Nutrient Deficiencies. Plant Physiology. 163: 161-179.
Helal, R.M. and Samir, M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Crop Science. 1: 31-36.
Holy, M.C. (1972). Indole acetic acid oxidase: a dual catalytic enzyme. Plant Physiology. 50: 15-18.
Hosseinzadeh, S.R., Amiri, H. and Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica. 54 (1): 87-92.
Hu, Y.C. and Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Plant Nutrition Soil Science. 168: 541-549.
Hussain, M.M., Reid, J.B., Othman, H. and Gallagher, YN. (2000). Growth and water use of faba beans (Vicia faba) in a sub-humid climate root and shoot adaptation to drought stress. Field Crop Research. 23: 1-17.
Khan, S. (2010). Resistance mechanisma in plants under stress conditions. American Science. 6: 34-41.
Khazaei, H. and Kafi, M. (2003). Effect of drought stress on root growth and dry matter partitioning between roots and shoots of winter wheat. Field Crops Research. 1(1): 33-41. (In Persian with English abstract).
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randapp, R.J. (1951). Protein measurement with the folin phenol reagent. Research Chemistry. 191: 265-275.
Parsa, M. and Bagheri, A. (2008). Legumes. Mashhad University Jahad Press. (In Persian).
Puangbut, D., Jogloy, S., Vorasoot, N., Akkasaeng, C., Kesmala Rao, T., Achaputi, C.N., Wright, G.C. and Patanothai, A. (2009). Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agriculture Water Management. 96: 1460-1466.
Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A., Najafi, F. and Roshanfekr, M. (2012). Use of biochemical indices and antioxidant enzymes as a screening technique for drought tolerance in Chickpea genotypes (Cicer arietinum L.). African Journal Biotechnology. 7: 5372 - 5380.
Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A.R. and Najafi, F. (2011). Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biomaterialia. 53: 47-56.
Saeidi, M. and Abdoli, M. (2015). Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Journal of Agricaltural and Tecnology. 17 (4): 885-898.
Safaei Chaeikar, S., Rabiei, B., Samizadeh, H. and Esfahani, M. (2008). Evaluation of tolerance to terminal drought stress in rice (Oryza sativa L.) genotypes. Iranian Journal Crop Science. 9 (4): 315-331. (In Persian with English abstract).
Salehifar, M., Rabiei, B., Afshar Mohammadian, M. and Asghari, J. (2014). Effect of IAA and Kinetin application on plant characteristics and chlorophyll fluorescence parameters in rice seedlings under drought stress condition. Iranian Journal Crop Science. 16(4): 293-307. (In Persian with English abstract).
Singh, G., Sekhon, H.S. and Kolar, J.S. (2005). Pulses. Agrotech Publishing Academy, Udaipur, India.
Sio-Se Mardeh, A., Gholami, S., Bahramnejad, B., Kanouni, H. and Sadeghi, F. (2014). Effect of drought stress on compatible osmolytes content, enzyme activity and grain yield in chickpea (Cicer arietinum L) genotypes. Iranian Journal Crop Science. 16(2): 109 -124. (In Persian with English abstract).
Siva, M.A., Da Silva J.A. and Sharma, S. (2007). Use of physiology parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal Plant Physiology. 19: 193-201.
Soltani, A., Khooie, F.R., Ghassemi–Golzani, K. and Moghaddam, M. (2001). Assimilation study of chickpea crop response to limited irrigation in a semiarid environment. Agricalture Water Management. 49: 225-237.
Tester, M. and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annual Botany. 91: 503-527.
Tewfik, K.M. (2008). Effect of water stress in addition to potassiom application on mungbean. Australian Journal Basic Science. 2: 42-52.
Valentovic, P., Luxova, M., Kolarovic, L. and Gasparicova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environment. 52: 186-191.
Yordanov, I., Velikova, V. and Tsonev, T. (2003). Plant responses to drought and stress tolerance. Bulgharian Journal of Plant Physiology. 2: 187-206.