برنامهریزی تعاملی فازی برای طراحی مدل ریاضی چند هدفه چند محصولی، چند مرحلهای برنامه تولید ادغامی چند دورهای دریک زنجیره تامین معکوس درشرایط عدم قطعیت
محورهای موضوعی : مدیریت صنعتیاصلان دوستی 1 , سعید رضایی مقدم 2
1 - گروه ریاضی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران
2 - گروه مدیریت، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران
کلید واژه: برنامه ریزی تعاملی فازی, مدل ریاضی چند هدفه, تولید ادغامی زنجیره تامین معکوس, عدم قطعیت,
چکیده مقاله :
در همه سیستمها اعم از تولیدی و خدماتی ضرورت و اهمیت برنامهریزی امری غیر قابل اجتناب است. پژوهش حاضر در صدد طراحی یک مدل ریاضی برنامه تولید ادغامی چند هدفه چند محصولی چند مرحلهای و برای چند دوره در یک زنجیره تامین معکوس است. لذا برای حداقل سازی هزینه موجودی، تولید و نیروی انسانی حداقل، حداکثر کیفیت محصول تولیدی و ضریب اهمیت تامین کننده و کمینه سازی بیشترین وقوع عدم اطمینان در هر مرحله از تولید، که سبب تشخیص گلوگاه کاری صنعت مورد نظر شود، یک مدل ریاضی برنامه تولید ادغامی چند هدفه چند محصولی چندمرحلهای، برای چند دوره در یک زنجیره تامین معکوس در شرایط عدم قطعیت طراحی شده است. در این مدل ریاضی تابع هدف کیفیت و برخی از پارامترها در محدودیتها در حالت عدم قطعیت به روش اعداد فازی مثلثی ارائه شدهاند. برای حل مدل مذکور از یک رویکرد حل فازی تعاملی با برنامه نویسی در نرم افزار گمز و با دادههای واقعی شرکت قطعات بتنی بروجن استحکام، استفاده میشود.
In all systems, whether in production or service, the necessity and importance of planning are undeniable. This research aims to develop a mathematical model for a multi-objective, multi-product, multi-stage integrated production program over several periods within a reverse supply chain. The objectives include minimizing inventory, production costs, and manpower while maximizing the quality of the manufactured products and considering the supplier's importance. Additionally, the model seeks to reduce uncertainties at each production stage, which can lead to identifying industry bottlenecks. The proposed mathematical model incorporates a multi-stage, multi-objective, multi-product integration for multiple periods in a reverse supply chain under conditions of uncertainty. In this model, the quality objective function and various parameters are expressed in the constraints using triangular fuzzy numbers to account for uncertainty. To solve this model, an interactive fuzzy solution approach is employed, utilizing Games software and real data from Borojan Teght Concrete Parts Company.
Ahmed, S. A. Biswas, T. K. Nundy, C. K. (2019). An Optimization Model for Aggregate Production Planning and Control: A Genetic Algorithm Approach. International Journal of Research in Industrial Engineering, 8, (3). 203–22
Amir Khan, M., Nurang, A., & Tawakli Moghadam, R. (2014). A fuzzy interactive planning approach for multi-level, multi-product, and multi-period supply chain network design under uncertainty conditions considering cost and time. Production and Operations Management, 6 (1), 127-148. [In Persian]
Azar, A., & Sadat Hosseini, A. (2014). Designing a multi-product production planning model in the supply chain based on the ideal planning approach: Case study of Burns Industrial Group. Quarterly Journal of Industrial Meditation Studies, 12 (34), 1-17. [In Persian]
Azami, A., & Makoei, A. (2015). A robust optimization model for planning the integrated production of multi-factory perishable products under uncertainty conditions with a deferral policy. Scientific Quarterly: Research in Industrial Management Studies, 43, 27-51. [In Persian]
Doosti, A., & Rezaei Moghadam, S. (2020). Presenting a multi-objective mathematical model for planning the production of several products and multiple stages for several periods using the Markowitz method in Gomz software. Quarterly Journal of Contemporary Research in Management and Accounting, 3 (8). [In Persian]
Haji, A., & Mohammad Rahimi. (2007). Application of fuzzy multi-objective linear programming in integrated production planning. In Proceedings of the 6th International Industrial Engineering Conference, Tehran. [In Persian]
Hosseini, S. M. H. (2019). Modeling and integrated problem-solving in integrated production planning and maintenance in a two-purpose mode with a customer dissatisfaction approach. *Scientific-Research Journal: Industrial Management Studies, 56*. [In Persian]
Khatami Firoozabadi, S. M. A., & Makoei, A. (n.d.). Integrated production planning of Iran Pipe and Machinery Company with the ideal gray planning approach. Management Research Journal of Tomorrow, 12 (35). [In Persian]
Makoei, A., Turkestani, S., & Serajian, A. (2016). Multi-objective optimization. University of Science and Technology Publications. [In Persian]
Mirzapour, Al-e-hasema, S. M. J., Malekly, H., & Aryanezhada, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134 (1), 28–42.
Mirzapour, Al-e-hasema, S. M. J., Aryanezhada, M. B., & Sadjadi, S. J. (2012). An efficient algorithm to solve a multi-objective robust aggregate production planning problem in an uncertain environment. The International Journal of Advanced Manufacturing Technology, 58 (5), 765-782.
Mirzapour, Al-e-hasema, S. M. J., Baboli, A., & Sazvar, C. (2013). A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase, and shortage cost functions. European Journal of Operational Research, 230 (1), 26–41.
Nobil, A. H., & Kazemi, A. (2016). Presenting a multi-objective fuzzy model for integrated production-distribution planning in a four-level closed-loop supply chain. International Journal of Industrial Engineering and Production Management, 27 (1). [In Persian]
Ramyar, M., Mehdizadeh, E., & Hadji Molana, M. (2017). Optimizing reliability and cost of the system for aggregate production planning in supply chain. Scientia Iranica, 24(6), 3394-3408.
Rezaie Moghaddam, S., Yousefi, A., Karbasian, M., & Khayyam, B. B. (2018). A robust optimization model for multi-factory integrated production planning of perishable products under uncertainty with a deferral policy. Quarterly Journal of Industrial Management Studies, 43, 27-51. [In Persian]
Rezaei Moghadam, S., & Doosti, A. (2018). Designing a multi-objective mathematical model of aggregate production planning in a reverse supply chain with a production quality function under uncertainty using the industry-studied MPSOGA algorithm. High-Tech Engineering Management and Computing Soft, 5 (2), 325-356. [In Persian]
Mehrmanesh, H., & Karimi, M. (2020). An integrated mathematical model of production planning considering order acceptance, production, and customer delivery at Marun Petrochemical Company. Journal of Quality Engineering and Production Optimization. [In Persian]
Sutrisno, P. A., Wicaksono, & Solikhin. (2019). Probabilistic multi-objective optimization approach to solving production planning and raw material supplier selection problems under probabilistic demand values. Journal of Physics: Conference Series, The 6th International Conference on Research, Implementation, and Education of Mathematics and Science, Yogyakarta, Indonesia.
Tolouei Ashlaghi, A., Ehtesham, R. R., Nazemi, J., & Alborzi, M. (2014). Design and mathematical model of the production planning process and inventory control in a reverse supply chain. Journal of Development and Transformation Management, 8. [In Persian]
Yazdani, F., Tavakoli Moghadam, R., & Bashiri, M. (2013). Presenting a two-objective optimization model for the design of a closed-loop supply chain network, considering disruptions in production centers. Proceedings of the First National Industrial Engineering Research Conference. [In Persian]
Zarrinpour, N., Didar, E., & Mansouri, N. (2018). Presenting a robust optimization model for mass production planning in green supply chain management. Proceedings of the 15th International Conference on Industrial Engineering. [In Persian]