Effect of Potassium Silicate on Growth and Biochemical Attributes of Tomato under Salt Stress
Subject Areas : Plant PhysiologyRiti Kapoor 1 * , Pooja Yadav 2
1 - Plant Physiology Laboratory, Amity Institute of Biotechnology,
Amity University Uttar Pradesh, Noida - 201 313, India
2 - Plant Physiology Laboratory, Amity Institute of Biotechnology,
Amity University Uttar Pradesh, Noida - 201 313, India
Keywords: growth, Salt stress, potassium silicate, Biochemical attributes, Solanum lycopersicum,
Abstract :
Salinity is one of the rising problems causing tremendous crop productivity losses in different parts of the globe. Silicon can be regarded as multi-talented quasi-essential element due to its versatile role in providing several benefits for plant growth particularly under stress conditions. The present investigation deals with the impact of potassium silicate on the germination and biochemical parameters of tomato under salt stress. Maximum seed germination of tomato seeds 98% was observed with potassium silicate. The seed germination and other growth characteristics followed the order: PS > C > NaCl (1mM)+PS > NaCl (1.5 mM)+PS > NaCl (2mM)+PS > NaCl. Application of potassium silicate significantly increased biochemical components such as pigment content, sugar, proline, protein and total antioxidant contents in tomato seedlings. Maximum total antioxidant content 55% was observed in NaCl (2mM)+PS treatment. The results revealed that potassium silicate acts as a plant growth promoter and it can be used as fertilizer for tomato under salt stress.
Abbas, T., R.M. Balal, M.A. Shahid, M.A. Pervez, C.M. Ayyub, M.A. Aqueel, and M.M. Javaid. 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37:1-15.
Abdul Baki, A.A., and J. D. Anderson. 1973. Viability and leaching of sugars from germinating seeds by textile, leather and distillery industries. Indian Journal of Environmental Protection, 11: 592 -594.
Ahmad, A., M. Afzal, A. Ahmad, and M. Tahir. 2013. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercetari agronomice in Moldova, 46:21-28.
Ahmad, P., A.A. Abdel Latef, E.F. Abd Allah, A. Hashem, M. Sarwat, N.A. Anjum, and S. Gucel. 2016. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Frontiers in Plant Science, 7: 513.
Ali, N., E. Réthore, J.C. Yvin, and S.A. Hosseini. 2020. The regulatory role of silicon in mitigating plant nutritional stresses. Plants, 9: 1779.
Annunziata, M.G., L.F. Ciarmiello, P. Woodrow, E. Dell’Aversana, and P. Carillo. 2019. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Frontiers in Plant Science, 10.
Artyszak, A. 2018. Effect of silicon fertilization on crop yield quantity and quality- a literature review in Europe. Plants, 7: 54.
Aslam, M., K. Ahmad, A.M. Arslan, and M.M. Amir. 2017. Salinity stress in crop plants: Effects of stress, tolerance mechanisms and breeding strategies for improvement. Journal of Agriculture and Basic Sciences, 2(1): 2518-4210.
Barrs, H.D., and P.E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15:413-428.
Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
Chen, D., L. Yin, X. Deng, and S. Wang. 2014. Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 36(9):2531-2535.
Etesami, H., and S.M. Adl. 2020. Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere. 15: 100229.
Farhangi-Abriz, S., and S. Torabian. 2018. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255: 953-962.
Gao, L., W. Li, U. Ashraf, W. Lu, Y. Li, C. Li, G. Li, G. Li, J. Hu. 2020. Nitrogen fertilizer management and maize straw return modulate yield and nitrogen balance in sweet corn. Agronomy. 10(3):362.
Garg, N., and S. Singh. 2018. Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. (pigeonpea) genotypes under cadmium and zinc stress. Journal of Plant Growth Regulation. 37(6): 46-63.
Gomaa, M.A., E.E. Kandil, A.A.M.Z. El-Dein, M.E.M. Abou-Donia, H.M. Ali, N.R. Abdelsalam. 2021. Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Scientific Reports, 11: 224.
Hafez, E.M., H.S. Osman, U.A.A. El-Razek, M. Elbagory, A.E.D. Omara, M.A. Eid, and S. M. Gowayed. 2021. Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants. 10: 894.
Hasanuzzaman, M., M.H.M.B. Bhuyan, K. Nahar, S. Hossain, J. Al Mahmud, S. Hossen, A.A.C. Masud, M. Moumita, and M. Fujita. 2018. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31.
Hazewindus, M., G.R. Haenen, A.R. Weseler, and A. Bast. 2014. Protection against chemotaxis in the anti-inflammatory effect of bioactives from tomato ketchup. PLOS ONE, 9(12):114387.
Hedge, J.E., and B.T. Hofreiter. 1962. Estimation ofcarbohydrate. In Whistler, R.L.and Be Miller, J.N. (Ed.), Methods in carbohydrate chemistry. Academic Press, New York, pp. 17-22.
Hellal, F., M. Abdelhameid, D.M. Abo-Basha, and R. Zewainy. 2012. Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). Journal of Applied Sciences Research, 8:4428-4433.
Hnilickova, H., F. Hnilicka, J. Martinkova, and K. Kraus. 2017. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil and Environment. 63: 362-367.
Hoffmann, J., R. Berni, J.F. Hausman, and G. Guerriero. 2020. A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules. 10: 1284.
Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science. 168: 541-549.
ISTA. 2008. International rules for seed testing. international seed testing association. ISTA Secretariat, Switzerland.
Kalaji, H.M., A. Rastogi, M. Zivcak, M. Brestic, A. Daszkowska-Golec, K. Sitko, K.Y. Alsharafa, R. Lotfi, P. Stypinski, I. A. Samborska, and M.D. Cetner. 2018. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica, 56: 953-961.
Kandil, E. E., N.R. Abdelsalam, M.A. Mansour, H.M. Ali, and M.H. Siddiqui. 2020. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Scientific Reports, 10: 1-11.
Kim, G. B., and Y.W. Nam. 2013. A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. Journal of Plant Physiology. 170: 291-302.
Laane, H.M. 2018. The effects of foliar sprays with different silicon compounds. Plants, 7: 45.
Li, Y. 2008. Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan Journal of Biological Sciences, 11: 1268-1272.
Liang, Y., Q. Chen, Q. Liu, W. Zhang, and R. Ding. 2003. Exogenous silicon increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160: 1157-1164.
Liang, Y., M. Nikolic, R. Belangerm, H. Gong, and A. Song, 2015. Silicon in agriculture: from theory to practice. Springer, Dordrech.
Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. In: Methods Enzymology. Packer L.,Douce R., (Eds.), Academic Press, Sandiego. pp. 350-382.
Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193:265-275.
Ma, J., G. Du, X. Li, C. Zhang, and J. Guo. 2015. A major locus controlling malondialdehyde content underwater stress is associated with fusarium crown rot resistance in wheat. Molecular Genetics and Genomics, 290: 1955-1962.
Machado, R.M., and R.P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3: 30.
Manivannan, A., P. Soundararajan, S. Muneer, C.H. Ko, and B.R. Jeong. 2016. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International, Article ID 3076357
Marxen, A., T. Klotzbucher, R. Jahn, K. Kaiser, V.S. Nguyen, A. Schmidt, M. Schadler, and D. Vetterlein. 2015. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant and Soil, 398:153-163.
Massaretto, I.L., I. Albaladejo, E. Purgatto, F.B. Flores, F. Plasencia, J.M. Egea-Fernández, M.C. Bolarin, and I. Egea. 2018. Recovering tomato landraces to simultaneously improve fruit yield and nutritional quality against salt stress. Frontiers in Plant Science, 9: 1778.
Mehta, P., A. Jajoo, S. Mathur, and S. Bharti. 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem ii in wheat leaves. Plant Physiology and Biochemistry, 48: 16-20.
Muneer, S., Y.G. Park, A. Manivannan, P. Soundararajan, and B.R. Jeong. 2014. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences, 15: 21803-21824.
Mushtaq, Z., S. Faizan, and B. Gulzar. 2020. Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(03):81-91.
Nadeem, M., J. Li, M. Yahya, M. Wang, A. Ali, A. Cheng, X. Wang, and C. Ma. 2019. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20:799.
Porcel, R., R. Aroca, R. Azcon, and J.M. Ruiz-Lozano. 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root to shoot distribution. Mycorrhiza, 26(7): 673-84.
Prieto, P., M. Pineda, and M, Aguilar. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Rahneshan, Z., F. Nasibi, and A.A. Moghadam. 2017. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1):73-82.
Sairam, R.K., P.S. Deshmukh, and D. S. Shukla. 1997. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178: 171-178.
Salinas, R., E. Sanchez, J.M. Ruíz, M.T. Lao, L. Romero. 2013. Proline, betaine, and choline responses to different phosphorus levels in green bean. Communications in Soil Science and Plant Analysis, 44: 465-472.
Seleiman, M.F., Y. Refay, N. Al-Suhaibani, I. Al-Ashkar, S. El-Hendawy, and E.M. Hafez. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy, 9: 637.
Shao, Q.S., S. Shu, J. Du, W.W. Xing, S.R. Guo, and J. Sun. 2015. Effects of NaCl stress on nitrogen metabolism of cucumber seedlings. Russian Journal of Plant Physiology, 62: 595-603.
Soltabayeva, A., A. Ongaltay, J.O. Omondi, and S. Srivastava. 2021. Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10: 243.
Tan, H., J.M. Thomas-ahner, E.M. Grainger, L. Wan, D.M. Francis, S.J. Schwartz, and S.K. Clinton. 2010. Tomato-based food products for prostate cancer prevention: what have we learned? Cancer Metastasis Reviews, 29(3):553-568.
Tang, N., B. Zhang, Q. Chen, P. Yang, L. Wang, and B. Qian. 2020. Effect of salt stress on photosynthetic and antioxidant characteristics in purslane (Portulaca oleracea). International Journal of Agriculture and Biology, 24: 1309-1314.
Xie, Z., R. Song, H. Shao, F. Song, H. Xu, and Y. Lu. 2015. Silicon improves maize photosynthesis in saline-alkaline soils. Scientific World Journal, 245072.
Yaghubi, K., N. Ghaderi, Y. Vafaee, and T. Javadi. 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae, 213: 87-95.
Yin, L. N., S.W. Wang, J.Y. Li, K. Tanaka, and M. Oka. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35: 3099-3107.
Yang, Y., and Y. Guo. 2018. Unraveling salt stress signalling in plants. Journal of Integrative Plant Biology. 60(9): 796-804.
Young, J. 1991. The photo protective role of carotenoids in higher plants. Physiologia Plantarum, 4:702-708.
Youssif, N.E.E., H.S.M. Osman, Y.A.M. Salama, and S.A.M. Zaghlool. 2018. Effect of rice straw and applications of potassium silicate, potassium humate and seaweed extract on growth and some macronutrients of sweet pepper plants under irrigation deficit. Arab Universities Journal of Agricultural Sciences, 26: 755-773.
Zargar, S.M., R. Mahajan, J.A. Bhat, M. Nazir, and R. Deshmukh. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech. 9:73.
Zhang, X., W. Zhang, D. Lang, J. Cui, and Y. Li. 2018. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environmental Science and Pollution Research. 25:25916-25932.