Growth Performance, Blood Indices and Hormonal Responses of Broiler Chickens Fed Monosodium Glutamate
Subject Areas : Camel
1 - Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, Akungba Akoko, Nigeria|Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology, Akure, Nigeria
2 - Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology, Akure, Nigeria
Keywords: Hormones, enzymes, lipids, chickens, monosodium glutamate,
Abstract :
Effects of dietary monosodium glutamate on the performance, hormonal profiles, haematological, and serum biochemical indices of broilers were studied. Three hundred (300) day-old unsexed Abor – acre broilers were randomly allotted into six groups containing varied levels of monosodium glutamate (MSG) (0.00, 0.25, 0.50, 0.75, 1.00, and 1.25 g/kg diet) for 8 weeks. Each group was replicated five times with ten birds per replicate. Feed intake was significantly (P<0.05) increased at 0.75 and 1.00 g MSG/kg diet. MSG above 0.50 g/kg diet significantly (P<0.05) reduced the total weight gain. Inclusion at 1.00 and 1.25 g/kg diet significantly (P<0.05) reduced the packed cell volume, red blood cells, and haemoglobin counts. However, the mean corpuscular volume and mean corpuscular haemoglobin at 1.25 g MSG/kg diet were significantly (P<0.05) elevated. The varying inclusion levels did not significantly (P>0.05) influence the differential white blood counts and blood viscosity. Albumin, total protein, and high-density lipoprotein cholesterol levels were significantly (P<0.05) lowered from an inclusion level of 0.75 g MSG/kg diet while a significant (P<0.05) increase was observed in the serum urea and low-density lipoprotein cholesterol levels at the same inclusion rate. Inclusion of 1.00 and 1.25 g MSG/kg diet significantly (P<0.05) elevated the serum corticosterone concentration while there was a significant (P<0.05) decrease in other hormonal responses at the same level of inclusion. The result indicated that the inclusion ofMSG up to 0.50 g/kg could be utilized in broiler feeds to enhance palatability and performance without any deleterious effects on the birds.
Abd El-Aziz G.S., El-Fark M.O., Hassan S.M. and Badawoud M.H. (2014). Effects of prolonged oral intake of monosodium glutamate (MSG) on body weight and its correlation to stomach histopathological changes in male rats. Thai J. Vet. Med. 44 (2), 201-208.
Abdulsalam H., Adamu S., Sambo S.J., Gadzama J.J., Chiroma M.A., Adeke J.T., Atata J.A. and Mohzo D.L. (2017). Haematological response of adult male wistar rats experimentally exposed to oral monosodium glutamate. J. Vet. Appl. Sci. 7(2), 29-34.
Adu O.A., Olarotimi O.J., Olayode S.O. and Adelowo A.O. (2017). Effects of dietary supplementation of copper sulphate and copper oxide on some egg quality parameters of laying hens. Slovak J. Anim. Sci. 50(3), 118-127.
Ahluwalia P. and Singh K. (2002). Alteration in lipid peroxidation, cytochrome P450, glutathione and its metabolizing enzymes upon msg administration in hepatic tissue of adult male mice. Indian J. Toxicol. 9, 23-27.
Al-Mamary M., Al-Habori M., Al-aghbari A.M. and Basker M.M. (2002). Investigation into the toxicological effects of Catha edulis leaves. A short term study in animals. Phytother. Res. 16(2), 127-132.
Alwaleedi S.A. (2016). Adverse effects of monosodium glutamate on serum lipid profile, cholesterol status and blood glucose in adult rats. Res. J. Pharm. Biol. Chem. Sci. 7(1), 732-739.
Amaduruonye W., Ikwunze K., Oguike M.A. and Onunkwo D.N. (2018). Impact of ginger (Zingiber officinale) on intestinal, caeca microbial loads and growth performance of broilers. Nigerian J. Anim. Sci. 20(1), 123-133.
Aniagu S.O., Nwinyi F.C., Akumka D.D., Ajoku G.A., Dzarma S., Izebe K.S., Ditse M., Nwaneri P.E.C., Wambebe C. and Gamaniel K. (2004). Toxicity studies in rats fed nature cure bitters. African J. Biotechnol. 4(1), 72-78.
Ashaolu J.O., Ukwenya V.O., Okonoboh A.B., Ghazal O.K. and Jimoh A.A.G. (2011). Effect of monosodium glutamate on hematological parameters in wistar rats. Int. J. Med. Med. Sci. 3(6), 219-222.
Ayazi M. (2014). The effect of dietary glutamine supplementation on performance and blood parameter, carcass characteristics, quality and characteristics meat of broiler chickens under continuous heat stress condition. Int. J. Farm. Alli. Sci. 3(12), 1234 – 1242.
Bartell S.M. and Batal A.B. (2007). The effect of supplemental Glutamine on growth performance, development of the gastrointestinal tract and humoral immune response of broilers. Poult. Sci. 86, 1940-1947.
Bertholf R.L. (2014). Protein and albumin. Lab. Med. 45(1), 25-41.
Brent G. (2012). Mechanisms of thyroid hormone action. J. Clin. Invest. 122(9), 3035-3043.
Cannan R.K. (1958). Book of Clinical Practical Chemistry. Publisher and Distributors, New Delhi, India.
Darras V.M., Visser T.J., Berghman R. and Kuhn E.R. (1992). Ontogeny of type I and type III deiodinase activities in embryonic and posthatch chicks: Relationship with changes in plasma triiodothyronine and growth hormone levels. Comp. Biochem. Physiol. 103, 131-136.
Dong H., Lin H., Jiao H.C., Song Z.G., Zhao J.P. and Jiang K.J. (2007). Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus domesticus) by corticosterone. Comp. Biochem. Physiol. 147, 189-195.
Douglas W. and Harold T. (2004). Small Animal Clinical Diagnosis by Laboratory Methods. Saunders and Elsevier Publisher, Philadelphia, Pennsylvania, USA.
Edwards M.B. and Bouchier A.D. (1991). Principle and Practice of Medicine. ELBS Churchill Living Stone. Man Group Ltd., Hong Kong, China.
Egbuonu A.C.C., Obidoa O., Ezeokonkwo C.A., Ezeanyika L.U.S. and Ejikeme P.M. (2009). Hepatotoxic effects of low dose oral administration of monosodium glutamate in male albino rats. African J. Biotechnol. 8(13), 3031-3032.
El Malik A. and Sabahelkhier M.K. (2019). Changes in lipid profile and heart tissues of wistar rats induces by using monosodium glutamate as food additive. Intl. J. Biochem. Physiol. 4(1), 141-147.
Ewuola E.O., Ogunlade J.T., Gbore F.A. and Egbunike G.N. (2008). Serum biochemistry and organ traits of growing rabbits fed Fusarium verticilloides cultured maize-based diet. Pp. 199-203 in Proc. 33rd Nigerian Annu. Anim. Prod. Conf., Nigerian Society of Animal Production, Ago Iwoye, Nigeria.
Friedewald W.T., Levy R.I. and Fredrickson D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
Gasem M.A. (2016). Effect of monosodium glutamate and aspartame on behavioral and biochemical parameters of male albino Mice. African J. Biotechl. 15(15), 601-612.
George B. and Kumaran B. (2016). Effect of Nigella sativa oil against monosodium glutamate induced toxicity on haematological parameters in rats. Intl. J. Recent Sci. Res. 7(6), 11592-11596.
Ghadhban R.F. (2017). Effects of monosodium glutamate on some hematological parameters in adult rats. Indian J. Appl. Res. 7(2), 688-690.
Gross K.L. and Cidlowski J.A. (2008). Tissue-specific glucocorticoid action: a family affair. Trends Endocrin. Metabol. 9, 331-339.
Harrison G.J. and Lightfoot T.L. (2005). Clinical Avian Medicine. Hardcover. Spix Publishing, Inc. Palm Beach, Florida, USA.
Hellen D.B., Miguel A., Areas P.B. and Felix G.R. (2013). Evaluation of biochemical, haematological and histological parameters in non-diabetic and diabetic Wister rats fed with Monosodium glutamate. Food Nutr. Sci. 4(1), 66-76.
Hermanussen M. and Tresguerres J.A. (2003). Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. J. Perinat. Med. 31(6), 489-495.
Hermanussen M., García A.P., Sunder M., Voigt M., Salazar V. and Tresguerres J.A. (2006). Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. European J. Clin. Nutr. 60(1), 25-31.
Ibukun O.O., Monday T., Abiola S.O. and Oladele S.O. (2015). Haematological effect of ethanolic extract of Uvaria chamae on monososdium glutamate-induced toxicity in sprague-dewley rats. Ann. Biol. Res. 6(7), 17-22.
Inuwa H.M., Aina V.O., Gabi B., Ola I.A. and Ja’afaru L. (2011). Determination of nephrotoxicity and hepatoxicity of monosodium glutamate (MSG) consumption. British J. Pharmacol. Toxicol. 2(3), 148-153.
Jay Y.J., Joel M.D., Mike D.T., Robert D.G., Jim L.N., David G.R. and Steve S.D. (2010). Feed additives for swine: Fact sheets – flavors and mold inhibitors, mycotoxin binders and antioxidants. J. Swine Health Prod. 18(1), 27-32.
Khadiga A.A., Ati S., Mohammed A.M. and Saad H.E. (2009). Response of broiler chicks to dietary monosodium glutamate. Pakistan Vet. J. 29(4), 165-168.
Kim W.R., Flamm S.L., Di Bisceglie A.M. and Bodenheimer H.C. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 47, 1363-1370.
Kondoh T. and Torii K. (2008). MSG intake suppresses weight gain, fat deposition, and plasma leptin in male Sprague-Dawley rats. Physiol. Behav. 95, 135-144.
Macho L., Jezova D., Zorad S. and Fickova M. (1999). Post natal monosodium glutamate treatment results in attenuation of corticosterone metabolic rate in adult rats. Endorin. Regul. 33, 61-67.
Malozowski S., Parmer T.G., Trojan S., Merriam G.R., Gibori G., Roberts C.T., Le Roith D., Werner H. and Zilberstein M. (1995). Growth hormone (GH) modulates insulin-like growth factor I (IGF-I) and type I IGF receptor mRNA levels in the ovary of prepubertal GH-deficient rats. European J. Endocrin. 132(4), 497-501.
Marx J., Hockberger R. and Walls R. (2013). Rosen’s Emergency Medicine Concepts and Clinical Practice. Elsevier, St. Louis, Missouri.
Millard W.J., Martin J.B., Audet J., Sagar S.M. and Martin J.B. (1982). Evidence that reduced growth hormone secretion observed in monosodium glutamate-treated rats is the result of a deficiency in growth hormone-releasing factor. Endocrinology. 110(2), 540-550.
Naghedi-Baghdar H., Nazari S.M., Taghipour A., Nematy M., Shokri S., Mehri M.R., Molkara T. and Javan R. (2018). Effect of diet on blood viscosity in healthy humans: A systematic review. Electro. Physics. 10(3), 6563-6570.
National Cholesterol Education Programme (NCEP). (2001). Third report of the NCEP on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. J. American Med. Assoc. 285(19), 2486-2497.
Nduka N. (1999). Clinical Biochemistry for Students of Pathology. Animo Press Ltd, Nigeria.
Newsholme P., Joaquim P., Manuela M., Tania C.P. and Rui C. (2003). Glutamine and glutamate: Their central role in cell metabolism and function. Cell Biochem. Funct. 21, 1-9.
Nosseir N.S., Ali M.H.M. and Ebaid H.M. (2012). A histological and morphometric study of monosodium glutamate toxic effect on testicular structure and potentiality of recovery in adult albino rats. Res. J. Biol. 2, 66-78.
Obici S. and Rossetti L. (2003). Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology. 144, 5172-5178.
Okediran B.S., Olurotimi A.E., Rahman S.A., Michael O.G. and Olukunle J.O. (2014). Alterations in the lipid profile and liver enzymes of rats treated with monosodium glutamate. Sokoto J. Vet. Sci. 12(3), 42-46.
Oladipo I.C., Adebayo E.A. and Kuye M.O. (2015). Effects of monosodium glutamate on ovaries of Female Aprague-Dawley rats. Int. J. Curr. Microbiol. Appl. Sci. 4(5), 737-745.
Onyema O., Farombi E., Emerole G., Ukoha A. and Onyeze G. (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J. Biochem. Biophys. 43, 20-24.
Post J., Rebel J.M.J. and ter Huurne A.A.H.M. (2003). Physiological effects of elevated plasma corticosterone concentrations in broiler chickens: An alternative means by which to assess the physiological effects of stress. Poult. Sci. 82, 1313-1318.
Quinlan G.J., Martin G.S. and Evans T.W. (2010). Albumin: Biochemical properties and therapeutic potential. Hepatology. 41(6), 1211-1219.
Rabie M.H., Sherif K.E., Abd El-Khalek A.M. and El-Gamal A.A.A. (2017). Effect of dietary energy and protein on growth performance and carcass traits of mamourah cockerels. Asian J. Anim. Vet. Adv. 12(3), 142-151.
Rezaei R., Knabe D.A., Tekwe C.D., Dahanayaka S., Ficken M.D., Fielder S.E., Eide S.J., Lovering S.L. and Wu, G. (2013). Dietary supplementation with monosodium glutamate is safe and improves growth performance in post weaning pigs. Amino Acids. 44(3), 911-923.
Ritchie B.W., Harrison J.G. and Harrison R.L. (1994). Avian Medicine. Winger’s Publishing, Inc., Florida, USA.
Roschlan P., Bernet E. and Gruber W. (1974). Enzymatische bestimmung des gesamt choles terium in serum. J. Clin. Biochem. 12, 403-407.
Salmanzadeh M., Ebrahimnezhad Y., Aghdam Shahryar H. and Ghiasighaleh Kandi J. (2020). The effects of in ovo administration of glutamine on hatchability, subsequent performance, digestive enzyme activities, immune response and some of blood parameter in broiler chickens. Iranian J. Appl. Anim. Sci. 10(3), 535-545.
Samuels A. (1999). The toxicity/Safety of MSG: A study in suppression of information. Account. Res. 6, 259-263.
Sani M.M., Bello A.B., Adam A.A., Abubakar H., Ahmad S. and Muhammad M.G. (2015). The effects of oral monosodium glutamate consumption on lipid profile of experimental rats. Int. J. Ethnomed. Pharmacog. 2(1), 6-12.
SAS Institute. (2008). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Seo H.J., Ham H.D., Jin H.Y., Lee W.H., Hwang H.S., Park A.A., Kim Y.S., Choi S.C., Lee S., Oh K.J., Kim B.S., Park B.R. and Lee M.Y. (2010). Chronic administration of monosodium glutamate under chronic variable stress impaired hypothalamic-pituitary-adrenal axis function in rats. Korean J. Physiol. Pharmacol. 14, 213-221.
Singh K., Sharma J., Kaur A. and Ahluwalia P. (2011). Alteration upon oral ingestion of monosodium glutamate in various lipid and lipoprotein fractions in serum of adult male rat. J. Lif Sci. 3, 17-21.
Song Z., Yuan L., Jiao H. and Lin H. (2011). Effect of corticosterone on hypothalamic corticotropin-releasing hormone expression in broiler chicks (Gallus gallus domesticus) fed a high energy diet. Asian-Australasian J. Anim. Sci. 24(12), 1736-1743.
Tapiero H., Mathe G., Couvreur P. and Tew K.D. (2002). Free amino acids in human health and pathologies -II. Glutamine and glutamate. Biomed. Pharmacol. 56, 446-457.
Tazawa H., Andrewartha S.J. and Burggren W.W. (2011). Development of hematological respiratory variables in late chicken embryos: The relative importance of incubation time and embryo mass. Comp. Biochem. Physiol. 159, 225-233.
Thaxton J.P. and Puvadolpirod S. (2000). Model of physiological stress in chickens: Quantitative evaluation. Poult. Sci. 79, 391-395.
Tietz N.W. (1995). Clinical Guide to Laboratory Tests. WB Saunders Company, Philadelphia, Pennsylvania, USA.
Veronika H. and Daniela O. (2013). Monosodium glutamate toxic effects and their Implications for human intake. A Rev. J. Med. Sci. Res. 60, 8765-12.
Yamazaki R.K., Brito G.A. and Coelho I. (2011). Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG obese rats. Lipids Health. Dis. 10, 66-72.
Yen P.M. (2001). Physiological and molecular basis of TH action. Physiol. Rev. 81, 1097-1142.
Yuan L., Lin H., Jiang K.J., Jiao H.C. and Song Z.G. (2008). Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. British Poult. Sci. 49, 487-495.
Yoshida Y., Kawabata F., Nishimura S. and Tabata S. (2021). The umami receptor T1R1-T1R3 heterodimer is rarely formed in chickens. Sci. Rep. 11(1), 12318-12326.
Zemel M.B. (2004). Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 79(5), 907-912.
Zhelyazkov G. (2018). Effect of monosodium glutamate dietary supplementation on some productive traits of common carp (Cyprinus carpio) cultivated in net cages. Agric. Sci. Technol. 10(3), 204-207.