نقش شاخصهای مرکزیت شبکههای اجتماعی در سازماندهی فضایی مبتنی بر سوابق طراحی (مطالعه موردی: بخش اورژانس بیمارستانها)
محورهای موضوعی : معماریرمیصاء رحمتی گواری 1 , هادی قدوسی فر 2 , منصوره طاهباز 3 , فاطمه زارع میرکآباد 4
1 - دانش آموخته دکترى معمارى، گروه معمارى، واحد تهران جنوب، دانشگاه آزاد اسلامى، تهران، ایران.
2 - استادیار گروه معمارى، واحد تهران جنوب، دانشگاه آزاد اسلامى، تهران، ایران
3 - دانشیار، دانشکدۀ معماری و شهرسازی، دانشگاه شهید بهشتی، تهران، ایران.
4 - استادیار، دانشکدۀ ریاضی و علوم کامپیوتر، دانشگاه صنعتی امیرکبیر، تهران، ایران.
کلید واژه: نحوفضا, شاخص مرکزیت, شبکه اجتماعی, سوابق طراحی, نظریۀ گراف,
چکیده مقاله :
سازماندهی فضایی، مرحلهای بسیار حائز اهمیت بهخصوص در طراحی پلانهای کارکردی است. جهت سازماندهی کارکردی نیاز است فضاها بهدرستی جانمایی شوند. معماران در مراحل مختلف طراحی از سوابق طراحی بهره میبرند. فرض اصلی این پژوهش مبتنی بر این موضوع است که میتوان از سوابق طراحی، شاخصهای لازم برای ارزیابی روابط فضایی پلان را در مرحله برنامهریزی معماری استخراج نمود. هدف اصلی پژوهش بهکارگیری دانش موجود در سوابق طراحی جهت ارزیابی سازماندهی فضایی پیش از اجرا و پس از بهرهبرداری است. جهت انجام پژوهش 60 پلان اورژانس بیمارستان بهعنوان جامعۀ آماری (سوابق طراحی) انتخاب شدند. شاخصهای مرکزیت بینیت و نزدیکی برای تمامی حوزههای موجود در سوابق طراحی توسط نرمافزار سایتواسکیپ محاسبه شدند. تمرکز اصلی پژوهش بر سازماندهی عملکردی اصلیترین حوزۀ درمانی اورژانس (حوزۀ فوریت) قرارگرفته است. با محاسبۀ این شاخصها مشخص شد که حوزۀ فوریت باید به نحوی سازماندهی شود که بالاترین مرکزیت بینیت و نزدیکی را داشته باشد.
One of the most important obligations of architects in the early stages of designing a plan is spatial organization planning in high functional sensitivity cases. In such buildings, a spatial organization as a part of architectural planning should be defined in accordance with the use, and the criteria for the use should be taken into account so that the plan can meet the functional needs. In order to achieve a proper functional organization of the spaces, the spaces need to be properly located depending on their function. The main hypothesis of this study is to apply the available knowledge in the design precedents to assess the spatial functional organization before construction and after the operation. With the emerge of space syntax theory in architecture, it has been possible to turn the plans into graphs. Therefore, for analyzing the nodes in the graph, it can be used from the centrality indexes raised in the theory of networks and social networks, which are subsets of the graph theory. One of the most important functional plans is the hospitals’ emergency department, which has two main therapeutic units consisting “under surveillance” and “urgency”. In this unit, there are spaces in which the main and vital operations of the emergency department are carried out. As a result, immediate access to these spaces and areas should be possible both for patients who have just entered this department and have an emergency condition (acute), and those who are temporarily admitted or treated in other areas of this department. This means the importance of locating such spaces and areas. Accordingly, the research was looking for indexes to make it possible to know how to organize the main areas of this department by applying them to the design data. The research methodology in this study is applied in terms of research purpose and is quantitative in terms of research nature. The method of data collection is based on the documentary method and the work doing method is by computer simulation, pre-implementation evaluation and post-operation evaluation. Sixty hospital’s emergency plans were selected as the statistical population (design case histories) for the research. Betweenness and proximity centrality indexes were calculated for all areas in the design data by CytoScape software. The main focus of the research is on the functional organization of the main emergency’s urgency area. It was found from the research based on the vital spaces and areas in the emergency department functioning, these spaces or the area in which they are located should be among the shortest paths between other spaces and areas (high betweenness centrality index) and the extent to which they are accessed from all the other spaces are equal (the proximity centrality index). As a result, this research has focused on two betweenness and proximity centrality indexes in order to analyze the organization of spaces and areas of the department. It became clear by calculating these indexes that the urgency area should be organized in such a way that it is of the highest betweenness and proximity centrality indexes.
اکسنر، اولریخ؛ و پرسل، دتریش. (1395). مفاهیم پایه در طراحی فضا. (شادی عزیزی و صفورا اولنج، مترجمان). تهران: کتاب فکرنو.(نشر اثر اصلی 2009)
پناهی، سیامک؛ هاشمپور، رحیم؛ و اسلامی، غلامرضا. (1393). معماری اندیشه، از ایده تا کانسپت. هویت شهر، 8(17)، 25-34.
غریبپور، افرا. (1392). اصطلاحشناسی عملکرد معماری. نشریه هنرهای زیبا. 18(1)، 59-72.
لاوسون، برایان. (1395). طراحان چه میدانند. (حمید ندیمی، فرهاد شریعتراد، فرزانه باقیزاده، مترجمان). چاپ اول. تهران: انتشارات دانشگاه شهید بهشتی.
محمودی، سیدامیرسعید؛ و ذاکری، سیدمحمدحسین. (1390). استخراج دانش کاربردی از پیشینهها و تأثیر آن بر خلاقیت در طراحی معماری. نشریه هنرهای زیبا، 3 (47)، 39-50.
Akin,O. (1986). Psychology of architectural design. London: Pion.
Ashby, M., & Johnson, K. (2002). Materials and Design. (3thed.). Oxford: Butterworth Heinemann.
Beauchamp, M. A. (1965). An improved index of centrality. Behavioral Science. 10, 161-163.
Bhatta, S., Goel, A., & Prabhakar, S. (1994). Innovation in Analogical Design: A Model Based Approach In J. Gero & F. Sudweeks (Eds.), Artificial Intelligence in Design ,94. August, (pp. 57-74). Lausanne, Switzerland.
Boling, E., & Gray, C. M. (2018). Use of Precedent as a Narrative Practice in Design. In B. Hokanson, G. Clinton, & K. Kaminiski (Eds.) Educational Technology and Narrative: Story and Instructional Design. (pp. 259-270). Switzerland.
Borgatti, P. (2005). Centrality and Network Flow. Social Networks, 27, 55-71.
Clark, R. H., & Pause, M. (1985). Precedents in architecture. New York: Van Nostrand Reinhold.
Eilouti, B. H. (2009). Design Knowledge Recycling Using Precedent-Based Analysis and Synthesis Models. Design Studies, 30(4), 340-68.
Eilouti, B. (2009). Knowledge Modeling and Processing in Architectural Design.
Freeman, L. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1(3), 215-239.
Grover, R., Emmitt, S., & Copping, A. (2018). The typological learning framework: the application of structured precedent design knowledge in the architectural design studio. International Journal of Technology and Design Education, 28(4), 1019-1038.
Heath, T. (1984). Method in Architecture. Chichester: Wiley.
Jamil, A. (2009). A Model integrating theories of architecture lectures in architectural design studio. Proceedings of the fourth International Conference on architectural education: flexibility in architectural education. May 26-29, (pp.377-391). Turkey: Erciyes University Faculty of Architecture.
Jarvis, P. R. (2016). Improving emergency department patient flow. Clinical and experimental emergency medicine. 3, 63-68.
Kosorukoff, A. (2011). Social Network Analysis:Theory and Applications. Available at:https://www.politaktiv.org/documents/10157/29141/SocNet_TheoryApp.pdf
Lawson, B. (2004). What Designers Know. Oxford: Architectural Press.
Leavitt, H. J. (1949). Some Effects of Certain Communication Patterns on Group Performance. Unpublished Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.
Leavitt, H. J. (1951). Some effects of communication patterns on group performance. Journal of Abnormal and Social Psychology, 46, 38-50.
Liu, X., Patacchini, E., Zenou, Y., & Lee, L. (2012). Criminal Networks: Who is the Key Player? working paper. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.557&rep=rep1&type=pdf
Loyola, M. (2018). Big data in building design: a review. Journal of Information Technology in Construction (ITcon), 23, 259-284.
Mackenzie, K. D. (1966). The information theoretic entropy function as a total expected participation index for communication network experiments. Psychometrika. (31), 249-254.
Milburn, L., & Brown, R. (2003). The relationship between research and design in landscape architecture, Landscape and Urban Planning, 64 ,47-66.
Morales, C. ( 2014). ArchDaily: Los dos chilenos que conquistaron el mundo -. Forbes Mexico. Available at:http://www.forbes.com.mx/archdaily-los-dos-chilenos-que-conquistaron-el-mundo/
Newman, M. E. J. (2010). Networks:An Introduction. Oxford University press. Available at: http://math.sjtu.edu.cn/faculty/xiaodong/course/Networks%20An%20introduction.pdf
Nourian, P. (2016). Configraphic: Graph Theoretical Methods for Design and Analysis of Spatial Configurations , Unpublished PhD Dissertation, Delft University of Technology.
Oxman, R. (1994). Precedents in design: a computational model for the organization of precedent knowledge, Israel Institute of Technology.
Pitts, F. R. )1965.( A graph theoretic approach to historical geography. The Pofessional Geographer, 17(5), 15-20.
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603. Available at: https://econpapers.repec.org/article/sprpsycho/v_3a31_3ay_3a1966_3ai_3a4_3ap_3a581-603.htm
Schank, R. (1983). Dynamic Memory:A Theory of Reminding and Learning in Computers and people. Cambridge University Press, Cambridge UK.
Vaughan, L. (2007), The Spatial Syntax of urban segregation, Progress in Planning, 67, 205-294.
Yu, T., Li, M., Wang, J., Pan, Y., & Wu, F.(2015). CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. BioSystem, 127, 67-72.