آنتیبیوتیکهای دام و طیور، انتشار در محیط زیست و تاثیر آن بر سلامت خاک، گیاه و انسان
محورهای موضوعی :
کشاورزی و محیط زیست
مهسا محمدزاده
1
,
فروزان قاسمیان رودسری
2
,
اکبر حسنی
3
*
,
عباسعلی زمانی
4
1 - دانشجوی کارشناسی ارشد علوم محیط زیست، دانشکده علوم، دانشگاه زنجان
2 - استادیار گروه زیست شناسی، دانشکده علوم دانشگاه زنجان
3 - استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان
4 - استادیار گروه علوم محیط زیست، دانشکده علوم، دانشگاه زنجان
تاریخ دریافت : 1397/01/28
تاریخ پذیرش : 1397/11/07
تاریخ انتشار : 1401/01/01
کلید واژه:
کود حیوانی,
مقاومت آنتی بیوتیکی,
آنتیبیوتیکهای دام و طیور,
خاک کشاورزی,
چکیده مقاله :
زمینه و هدف: آنتی بیوتیک های حوزه دام و طیور به طور گسترده ای در ایران و سایر نقاط جهان برای مقابله با بیماری های دام و طیور و به دلیل افزایش تقاضا برای گوشت و لبنیات در جامعه مورد استفاده قرار می گیرند. بخش عمده ی این آنتی بیوتیک ها توسط ادرار و مدفوع دام و طیور دفع شده و این فضولات به عنوان کود دامی توسط کشاورزان در مزراع و باغات استفاده می شوند. این روند، نگرانی هایی را در مورد انتشار آنتی بیوتیک ها در محیط زیست ایجاد نموده است. افزایش غلظت این ترکیبات در محیط های کشاورزی ممکن است منجر به بروز باکتری ها و ژن های مقاوم به آنتی بیوتیک شود و در نهایت روی سلامت خاک، گیاه و انسان تاثیرگذار باشد.
روش بررسی: در این مقاله به طور خلاصه مقدار مصرف آنتی بیوتیک در جهان و ایران، راه های انتشار آن در محیط زیست توسط کودهای دام و طیور، تاثیر آن بر جامعه میکروبی خاک، تجمع آنتی بیوتیک ها در اندام های خوراکی گیاهان و تاثیر آن بر سلامت جوامع انسانی مورد بررسی قرار گرفته است. همچنین تاثیر کمپوست نمودن کودهای دام و طیور قبل از ورود آن به مزراع و باغات به عنوان یک راهکار نسبتاً مناسب برای جلوگیری از ورود این ترکیبات به خاک نیز مورد بررسی قرار گرفته است. در نهایت شکاف های تحقیقاتی موجود و پیشنهاداتی جهت فهم دقیق تر این موضوع در کشور ایران بیان شده است.
یافته ها: اغلب آنتی بیوتیک های دامی که به زمین های کشاورزی اضافه می شوند، توسط ریشه گیاهان قابل جذب هستند. این موضوع منجر به تجمع زیستی آنها در بافت های گیاهی و ایجاد سمیت برای گیاهان می شود. نوع تیمارهایی که قبل از ورود کود دامی به مزرعه انجام می شود، تعیین کننده غلظت نهایی آنتی بیوتیک وارد شده به محیط زیست می باشد.
بحث و نتیجه گیری: شکاف های تحقیقاتی قابل توجهی در زمین انتشار آنتی بیوتیکها در محیط زیست وجود دارد. در کشور ایران باید غلظت انواع آنتی بیوتیک ها در کود دامی و طیور و همچنین سرنوشت آنها در خاک، گیاه و انسان مورد بررسی قرار گیرد.
چکیده انگلیسی:
Background and Objective: Veterinary Antibiotics are widely used in Iran and elsewhere in the world to deal with livestock and poultry diseases, due to increased demand for meat and dairy products in the community. Most of these antibiotics are excreted in the urine and feces of livestock and poultry and these excrements are used as manure by farmers in fields and gardens. This issue has raised concerns about the release of antibiotics in the environment. Increasing the concentration of these compounds in agricultural environments may lead to antibiotic-resistant bacteria and genes, and ultimately affect the health of soil, plant, and humans.
Method: In this article, a brief overview of the use of antibiotics in the world and Iran, ways to release it in the environment by livestock and poultry manure, its effect on the microbial community of the soil, the accumulation of antibiotics in the edible parts of plants and its impact on the health of human has been studied. Also, the effect of composting livestock and poultry manure before entering the fields and gardens as a suitable strategy to prevent the occurrence of these compounds into the soil has also been studied. Finally, existing research gaps and suggestions for a more accurate understanding of this issue in Iran has been declared.
Findings: Most Veterinary antibiotics added to agricultural land are absorbed by plant roots. This leads to their bioaccumulation in plant tissues and toxicity to plants. The type of treatments performed before the introduction of livestock manure into the field determines the final concentration of antibiotics introduced into the environment.
Discussion and Conclusions: There are significant research gaps in the release of antibiotics into the environment. In Iran, the concentration of various antibiotics in manure and poultry as well as their fate in soil, plants and humans should be investigated.
Key words: Veterinary antibiotics (VAs), Agricultural soil, Manure fertilizer, Antibiotic resistance.
منابع و مأخذ:
Du, L.Liu, W.(2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for sustainable development. 32(2):309-327.
Du Toit, A.(2018). Antimicrobials: Breaking ground for new antibiotics. Nature Reviews Microbiology. 16(4):186.
Gualerzi, C.O.Brandi, L.Fabbretti, A.Pon, C.L., Antibiotics: Targets, mechanisms and resistance. 2013: John Wiley & Sons.
Walsh, C., Antibiotics: actions, origins, resistance. 2003: American Society for Microbiology (ASM).
Gelband, Molly Miller, P.Pant, S.Gandra, S.Levinson, J.Barter, D., et al.(2015). The state of the world's antibiotics 2015. Wound Healing Southern Africa. 8(2):30-34.
Van Boeckel, T.P.Brower, C.Gilbert, M.Grenfell, B.T.Levin, S.A.Robinson, T.P., et al.(2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences. 112(18):5649-5654.
Pepper, I.Brooks, J.P.Gerba, C.P.(2018). Antibiotic resistant bacteria in municipal wastes: Is there reason for concern? Environmental science & technology.
Grenni, P.Ancona, V.Caracciolo, A.B.(2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal. 136:25-39.
Thiele‐Bruhn, S.(2003). Pharmaceutical antibiotic compounds in soils–a review. Journal of Plant Nutrition and Soil Science. 166(2):145-167.
.Aust, M.-O.Godlinski, F.Travis, G.R.Hao, X.McAllister, T.A.Leinweber, P., et al.(2008). Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental Pollution. 156(3):1243-1251.
Liu, X.Lu, S.Guo, W.Xi, B.Wang, W.(2018). Antibiotics in the aquatic environments: A review of lakes, China. Science of The Total Environment. 627:1195-1208.
Xie, W.Shen, Q.Zhao, F.(2018). Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science.
.Peng, P.-c.Wang, Y.Liu, L.-y.Zou, Y.-d.Liao, X.-d.Liang, J.-b., et al.(2016). The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycycline residues in layer chicken manure. Poultry science. 95(5):1033-1041.
Slana, M.Pahor, V.Cvitkovič Maričič, L.Sollner‐Dolenc, M.(2014). Excretion pattern of enrofloxacin after oral treatment of chicken broilers. Journal of Veterinary Pharmacology and Therapeutics. 37(6):611-614.
Kim, K.-R.Owens, G.Kwon, S.-I.So, K.-H.Lee, D.-B.Ok, Y.S.(2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution. 214(1-4):163-174.
Berger, K.Petersen, B.Buening-Pfaue, H.(1986). Persistence of drugs occurrring in liquid manure in the food chain. Archiv fuer Lebensmittelhygiene. 37:99-102.
Renner, R.(2002). Do cattle growth hormones pose an environmental risk? Environmental Science and Technology. 36:194A–197A.
Levy, S.B., The antibiotic paradox: how miracle drugs are destroying the miracle. 2013: Springer.
Yamaguchi, T.Okihashi, M.Harada, K.Konishi, Y.Uchida, K.Hoang Ngoc Do, M., et al.(2017). Detection of antibiotics in chicken eggs obtained from supermarkets in Ho Chi Minh City, Vietnam. Journal of Environmental Science and Health, Part B. 52(6):430-433.
Popova, I.E.Josue, R.D.Deng, S.Hattey, J.A.(2017). Tetracycline resistance in semi-arid agricultural soils under long-term swine effluent application. Journal of Environmental Science and Health, Part B. 52(5):298-305.
Leal, R.M.P.Figueira, R.F.Tornisielo, V.L.Regitano, J.B.(2012). Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Science of the total Environment. 432:344-349.
Li, Y.-x.Zhang, X.-l.Li, W.Lu, X.-f.Liu, B.Wang, J.(2013). The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental monitoring and assessment. 185(3):2211-2220.
Zhao, L.Dong, Y.H.Wang, H.(2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment. 408(5):1069-1075.
Hamscher, G.Sczesny, S.Höper, H.Nau, H.(2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical chemistry. 74(7):1509-1518.
Zhang, J.Dong, Y.An, Q.Liu, X.(2005). Environmental fate of veterinary medicines in soil. 37(4):353-361.
Hamscher, G.Pawelzick, H.T.Sczesny, S.Nau, H.Hartung, J.(2003). Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environmental Health Perspectives. 111(13):1590.
Martínez-Carballo, E.González-Barreiro, C.Scharf, S.Gans, O.(2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution. 148(2):570-579.
Bao, Y.Zhou, Q.Guan, L.Wang, Y.(2009). Depletion of chlortetracycline during composting of aged and spiked manures. Waste Management. 29(4):1416-1423.
Slana, M.Sollner-Dolenc, M.(2016). Enrofloxacin degradation in broiler chicken manure under various laboratory conditions. Environmental Science and Pollution Research. 23(5):4422-4429.
Slana, M.Žigon, D.Sollner-Dolenc, M.(2017). Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment. Environmental Science and Pollution Research. 24(15):1-10.
Stone, J.J.Clay, S.A.Zhu, Z.Wong, K.L.Porath, L.R.Spellman, G.M.(2009). Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water research. 43(18):4740-4750.
Gagliano, G.McNamara, F.(1996). Environmental assessment for enrofloxacin BAYTRILÒ 3.23% concentrate antimicrobial solution. 21CFR Part 25.:1-119.
Wetzstein, H.Schneider, S.Karl, W. Kinetics of the biotransformation of enrofloxacin in aging cattle dung. in 102nd General Meeting of the American Society for Microbiology, Salt Lake City, UT. 2002.
Moraru, R.Pourcher, A.-M.Jadas-Hecart, A.Kempf, I.Ziebal, Kervarrec, M., et al.(2012). Changes in concentrations of fluoroquinolones and of ciprofloxacin-resistant Enterobacteriaceae in chicken feces and manure stored in a heap. Journal of Environmental Quality. 41(3):754-763.
Pierini, E.Famiglini, G.Mangani, F.Cappiello, A.(2004). Fate of enrofloxacin in swine sewage. Journal of Agricultural and Food chemistry. 52(11):3473-3477.
De Liguoro, M.Cibin, V.Capolongo, F.Halling-Sørensen, B.Montesissa, C.(2003). Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. 52(1):203-212.
Kolz, A.Moorman, T.Ong, S.K.Scoggin, K.Douglass, E.(2005). Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environment Research. 77(1):49-56.
Loke, M.-L.Tjørnelund, J.Halling-Sørensen, B.(2002). Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. 48(3):351-361.
Dolliver, Gupta, S.Noll, S.(2008). Antibiotic degradation during manure composting. Journal of environmental quality. 37(3):1245-1253.
Arikan, O.A.Mulbry, W.Rice, C.(2009). Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials. 164(2-3):483-489.
Gou, M.Hu, H.-W.Zhang, Y.-J.Wang, J.-T.Hayden, H.Tang, Y.-Q., et al.(2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment. 612:1300-1310.
Yang, B.Meng, L.Xue, N.(2018). Removal of five fluoroquinolone antibiotics during broiler manure composting. Environmental technology. 39(3):373-381.
Chadwick, D.R.Chen, S., Manures, in Agriculture, hydrology and water quality, P.M. Haygarth and S.C. Jarris, Editors. 2002, CABI Publishing: Wallington, UK.
Martin, S.(1979). Equilibrium and kinetic studies on the interaction of tetracyclines with calcium and magnesium. Biophysical Chemistry. 10(3-4):319-326.
Hartlieb, N.Ertunc, T.Schaeffer, A.Klein, W.(2003). Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environmental Pollution. 126(1):83-91.
Søeborg, T.Ingerslev, F.Halling-Sørensen, B.(2004). Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water. 57(10):1515-1524.
47.Gavalchin, J.Katz, S.E.(1994). The persistence of fecal-borne antibiotics in soil. Journal of AOAC International (USA). 77:481-485.
Kreuzig, R.Höltge, S.(2005). Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environmental Toxicology and Chemistry. 24(4):771-776.
Rabølle, M.Spliid, N.H.(2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. 40(7):715-722.
Blackwell, P.A.Kay, P.Boxall, A.B.(2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. 67(2):292-299.
Boxall, A.B.Johnson, P.Smith, E.J.Sinclair, C.J.Stutt, E.Levy, L.S.(2006). Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry. 54(6):2288-2297.
Dolliver, H.Kumar, K.Gupta, S.(2007). Sulfamethazine uptake by plants from manure-amended soil. Journal of environmental quality. 36(4):1224-1230.
Hammad, H.M.Zia, F.Bakhat, H.F.Fahad, S.Ashraf, M.R.Wilkerson, C.J., et al.(2018). Uptake and toxicological effects of pharmaceutical active compounds on maize. Agriculture, Ecosystems & Environment. 258:143-148.
Gottlieb, D.(1976). The production and role of antibiotics in soil. The Journal of antibiotics. 29(10):987-1000.
Topp, W., Biologie der Bodenorganismen. 1981: Quelle and Meyer Heidelberg.
Lumsden, R.Locke, J.Adkins, S.Walter, J.Ridout, C.(1992). Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. 82:230–235.
Kumar, K.Gupta, S.Baidoo, S.Chander, Y.Rosen, C.(2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of environmental quality. 34(6):2082-2085.
Kumar, K.Gupta, S.C.Chander, Y.Singh, A.K.(2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in agronomy. 87:1-54.
Zuccato, E.Calamari, D.Natangelo, M.Fanelli, R.(2000). Presence of therapeutic drugs in the environment. The lancet. 355(9217):1789-1790.
Kolpin, D.W.Furlong, E.T.Meyer, M.T.Thurman, E.M.Zaugg, S.D.Barber, L.B., et al.(2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology. 36(6):1202-1211.
Zhang, H.Luo, Y.Zhou, Q.(2008). Research advancement of eco-toxicity of tetracycline antibiotics. Journal of Agro-Environment Science. 27(2):407-413.
Zhang, H.Zhang, M.Gu, G.(2008). Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province. J Ecol Rural Environ. 24(3):69-73.
Zhang, M.Wang, L.Zhang, S.(2008). Adsorption and transport characteristics of two exterior two source antibiotics in some agricultural soils. Acta Ecologica Sinica. 28(2):761-766.
Golet, E.M.Strehler, A.Alder, A.C.Giger, W.(2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry. 74(21):5455-5462.
Li, Y.-W.Wu, X.-L.Mo, C.-H.Tai, Y.-P.Huang, X.-P.Xiang, L.(2011). Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. Journal of agricultural and food chemistry. 59(13):7268-7276.
Chen, C.Li, J.Chen, P.Ding, R.Zhang, P.Li, X.(2014). Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental Pollution. 193:94-101.
Hu, X.Zhou, Q.Luo, Y.(2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution. 158(9):2992-2998.
Jacobsen, A.M.Halling-Sørensen, B.Ingerslev, F.Hansen, S.H.(2004). Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of chromatography A. 1038(1-2):157-170.
Halling‐Sørensen, B.Jacobsen, A.M.Jensen, J.SengeløV, G.Vaclavik, Ingerslev, F.(2005). Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: A field‐scale study in southern Denmark. Environmental Toxicology and Chemistry. 24(4):802-810.
Christian, T.Schneider, R.J.Färber, H.A.Skutlarek, D.Meyer, M.T.Goldbach, H.E.(2003). Determination of antibiotic residues in manure, soil, and surface waters. CLEAN–Soil, Air, Water. 31(1):36-44.
Ok, Y.S.Kim, S.-C.Kim, K.-R.Lee, S.S.Moon, D.H.Lim, K.J., et al.(2011). Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environmental monitoring and assessment. 174(1-4):693-701.
Karcı, A.Balcıoğlu, I.A.(2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the total environment. 407(16):4652-4664.
Aga, D.S.O'Connor, S.Ensley, S.Payero, J.O.Snow, D.Tarkalson, D.(2005). Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography− mass spectrometry. Journal of agricultural and food chemistry. 53(18):7165-7171.
Shelver, W.L.Hakk, H.Larsen, G.L.DeSutter, T.M.Casey, F.X.(2010). Development of an ultra-high-pressure liquid chromatography–tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. Journal of Chromatography 1217(8):1273-1282.
Kuppusamy, S.Kakarla, D.Venkateswarlu, K.Megharaj, M.Yoon, Y.-E.Lee, Y.B.(2018). Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems & Environment. 257:47-59.
Zarfl, C.Klasmeier, J.Matthies, M.(2009). A conceptual model describing the fate of sulfadiazine and its metabolites observed in manure-amended soils. 77(6):720-726.
Jechalke, S.Heuer, H.Siemens, J.Amelung, W.Smalla, K.(2014). Fate and effects of veterinary antibiotics in soil. Trends in microbiology. 22(9):536-545.
Thiele-Brun, S.Peters, D.(2007). Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Volkenrode. 57(1):13.
Junge, T.Meyer, K.Ciecielski, K.Adams, A.Schäffer, A.Schmidt, B.(2011). Characterization of non-extractable 14C-and 13C-sulfadiazine residues in soil including simultaneous amendment of pig manure. Journal of Environmental Science and Health, Part B. 46(2):137-149.
Popova, I.E.Bair, D.A.Tate, K.W.Parikh, S.J.(2013). Sorption, leaching, and surface runoff of beef cattle veterinary pharmaceuticals under simulated irrigated pasture conditions. Journal of environmental quality. 42(4):1167-1175.
Ostermann, A.Siemens, Welp, G.Xue, Q.Lin, X.Liu, X., et al.(2013). Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere. 91(7):928-934.
Pan, M.Chu, L.(2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution. 231:829-836.
Wu, X.Dodgen, L.K.Conkle, J.L.Gan, J.(2015). Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Science of The Total Environment. 536:655-666.
Bártíková, H.Podlipná, R.Skálová, L.(2016). Veterinary drugs in the environment and their toxicity to plants. 144:2290-2301.
Pan, M.Chu, L.(2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of The Total Environment. 545:48-56.
Leal, R.M.P.Alleoni, L.R.F.Tornisielo, V.L.Regitano, J.B.(2013). Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. 92(8):979-985.
Forster, M.Laabs, V.Lamshoft, M.Groeneweg, J.Zuhlke, S.Spiteller, M., et al.(2009). Sequestration of manure-applied sulfadiazine residues in soils. Environmental science & technology. 43(6):1824-1830.
Gulkowska, A.Sander, M.Hollender, J.Krauss, M.(2013). Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environmental science & technology. 47(13):6916-6924.
Poulsen, P.H.Al-Soud, W.A.Bergmark, L.Magid, J.Hansen, L.H.Sørensen, S.J.(2013). Effects of fertilization with urban and agricultural organic wastes in a field trial–Prokaryotic diversity investigated by pyrosequencing. Soil Biology and Biochemistry. 57:784-793.
Ding, G.-C.Radl, V.Schloter-Hai, B.Jechalke, S.Heuer, H.Smalla, K., et al.(2014). Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One. 9(3):e92958.
Ding, C.He, J.(2010). Effect of antibiotics in the environment on microbial populations. Applied microbiology and biotechnology. 87(3):925-941.
Hammesfahr, U.Heuer, H.Manzke, B.Smalla, K.Thiele-Bruhn, S.(2008). Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry. 40(7):1583-1591.
Thiele-Bruhn, S.Beck, I.-C.(2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. 59(4):457-465.
Westergaard, K.Müller, A.Christensen, S.Bloem, J.Sørensen, S.(2001). Effects of tylosin as a disturbance on the soil microbial community. Soil Biology and Biochemistry. 33(15):2061-2071.
Diao, X.Sun, Y.Sun, Z.Shen, J.(2004). Effects of Apramycin on microbial activity in different types of soil. Ecology and Environment. 13(4):565-568.
Fründ, H.-C.Schlösser, A.Westendarp, H.(2000). Effects of tetracycline on the soil microflora determined with microtiter plates and respiration measurement. Dtsch. Bodenkundl. Gesellsch. 93:244-247.
Kotzerke, A.Sharma, S.Schauss, K.Heuer, H.Thiele-Bruhn, S.Smalla, K., et al.(2008). Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution. 153(2):315-322.
Hund-Rinke, K.Simon, M.Lukow, T.(2004). Effects of tetracycline on the soil microflora: function, diversity, resistance. Journal of Soils and Sediments. 4(1):11.
Zielezny, Y.Groeneweg, J.Vereecken, H.Tappe, W.(2006). Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biology and Biochemistry. 38(8):2372-2380.
Čermák, L.Kopecký, J.Novotná, J.Omelka, M.Parkhomenko, N.Plháčková, K., et al.(2008). Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Applied soil ecology. 40(2):348-358.
Näslund, J.Hedman, J.E.Agestrand, C.(2008). Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquatic toxicology. 90(3):223-227.
Aldén Demoling, L.Bååth, E.(2008). No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environmental science & technology. 42(18):6917-6921.
Müller, A.Westergaard, K.Christensen, S.Sørensen, S.J.(2002). The diversity and function of soil microbial communities exposed to different disturbances. Microbial ecology. 44(1):49-58.
Liu, F.Ying, G.-G.Tao, R.Zhao, J.-L.Yang, J.-F.Zhao, L.-F.(2009). Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental pollution. 157(5):1636-1642.
Qingxiang, Y.Zhang, J.Kongfang, Z.Zhang, H.(2009). Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. Journal of Environmental Sciences. 21(7):954-959.
Wei, X.Wu, S.Nie, X.Yediler, A.Wong, M.(2009). The effects of residual tetracycline on soil enzymatic activities and plant growth. Journal of Environmental Science and Health, Part B. 44(5):461-471.
Yao, J.Niu, D.Li, Z.Liang, Y.Zhang, S.(2010). Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Scientia Agricultura Sinica. 43(4):721-728.
Macri, A.Stazi, A.Di Delupis, G.D.(1988). Acute toxicity of furazolidone onArtemia salina, Daphnia magna, andCulex pipiens molestus larvae. Ecotoxicology and environmental safety. 16(2):90-94.
Fedler, C.Day, D.(1985). Anaerobic digestion of swine manure containing an antibiotic inhibitor.
Kotzerke, A.Hammesfahr, U.Kleineidam, K.Lamshöft, M.Thiele-Bruhn, S.Schloter, M., et al.(2011). Influence of difloxacin-contaminated manure on microbial community structure and function in soils. Biology and fertility of soils. 47(2):177-186.
Schauss, K.Focks, A.Leininger, S.Kotzerke, A.Heuer, H.Thiele‐Bruhn, S., et al.(2009). Dynamics and functional relevance of ammonia‐oxidizing archaea in two agricultural soils. Environmental Microbiology. 11(2):446-456.
WANG, J.HAN, J.-z.(2008). Effects of Heavy Metals and Antibiotics on Soil and Vegetables.[J]. Journal of Ecology and Rural Environment. 4:90-93.
Bao, Y.Li, Y.Mo, C.Yao, Y.Tai, Y.Wu, X., et al.(2010). Determination of six sulfonamide antibiotics in vegetables by solid phase extraction and high performance liquid chromatography. Environ Chem. 29(3):513-518.
Jjemba, P.K.(2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture, Ecosystems & Environment. 93(1-3):267-278.
Sun, C.Dudley, Trumble, J.Gan, J.(2018). Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environmental Pollution. 234:39-47.
Migliore, L.Cozzolino, S.Fiori, M.(2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. 52(7):1233-1244.
Xie, X.Zhang, Y.Li, Z.Liang, Y.Yao, J.Zhang, S.(2009). Cultivar differences in toxic effects of oxytetracycline on wheat (Triticum durum). Asian J Ecotoxicol. 4(4):577-583.
Zhao, H.-M.Huang, H.-B.Du, H.Lin, J.Xiang, L.Li, Y.-W., et al.(2018). Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). Journal of Hazardous Materials.
Kong, W.Zhu, Y.Liang, Zhang, J.Smith, F.Yang, M.(2007). Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution. 147(1):187-193.
Hillis, D.G.Fletcher, J.Solomon, K.R.Sibley, P.K.(2011). Effects of ten antibiotics on seed germination and root elongation in three plant species. Archives of environmental contamination and toxicology. 60(2):220-232.
Manyi-Loh, C.Mamphweli, S.Meyer, E.Okoh, A.(2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. 23(4):795.
McKinney, C.W.Dungan, R.S.Moore, A.Leytem, A.B.(2018). Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiology Ecology.
Byrne-Bailey, K.Gaze, W.Kay, P.Boxall, A.Hawkey, P.Wellington, E.(2009). Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrobial Agents and Chemotherapy. 53(2):696-702.
Marti, R.Scott, A.Tien, Y.-C.Murray, R.Sabourin, L.Zhang, Y., et al.(2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and environmental microbiology. 79(18):5701-5709.
Wolters, B.Jacquiod, S.Sørensen, S.J.Widyasari-Mehta, A.Bech, T.B.Kreuzig, R., et al.(2018). Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS microbiology ecology. 94(4):fiy027.
Smith, D.L.Dushoff, J.Morris Jr, J.G.(2005). Agricultural antibiotics and human health. PLoS Medicine. 2(8):e232.
_||_
Du, L.Liu, W.(2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for sustainable development. 32(2):309-327.
Du Toit, A.(2018). Antimicrobials: Breaking ground for new antibiotics. Nature Reviews Microbiology. 16(4):186.
Gualerzi, C.O.Brandi, L.Fabbretti, A.Pon, C.L., Antibiotics: Targets, mechanisms and resistance. 2013: John Wiley & Sons.
Walsh, C., Antibiotics: actions, origins, resistance. 2003: American Society for Microbiology (ASM).
Gelband, Molly Miller, P.Pant, S.Gandra, S.Levinson, J.Barter, D., et al.(2015). The state of the world's antibiotics 2015. Wound Healing Southern Africa. 8(2):30-34.
Van Boeckel, T.P.Brower, C.Gilbert, M.Grenfell, B.T.Levin, S.A.Robinson, T.P., et al.(2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences. 112(18):5649-5654.
Pepper, I.Brooks, J.P.Gerba, C.P.(2018). Antibiotic resistant bacteria in municipal wastes: Is there reason for concern? Environmental science & technology.
Grenni, P.Ancona, V.Caracciolo, A.B.(2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal. 136:25-39.
Thiele‐Bruhn, S.(2003). Pharmaceutical antibiotic compounds in soils–a review. Journal of Plant Nutrition and Soil Science. 166(2):145-167.
.Aust, M.-O.Godlinski, F.Travis, G.R.Hao, X.McAllister, T.A.Leinweber, P., et al.(2008). Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental Pollution. 156(3):1243-1251.
Liu, X.Lu, S.Guo, W.Xi, B.Wang, W.(2018). Antibiotics in the aquatic environments: A review of lakes, China. Science of The Total Environment. 627:1195-1208.
Xie, W.Shen, Q.Zhao, F.(2018). Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science.
.Peng, P.-c.Wang, Y.Liu, L.-y.Zou, Y.-d.Liao, X.-d.Liang, J.-b., et al.(2016). The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycycline residues in layer chicken manure. Poultry science. 95(5):1033-1041.
Slana, M.Pahor, V.Cvitkovič Maričič, L.Sollner‐Dolenc, M.(2014). Excretion pattern of enrofloxacin after oral treatment of chicken broilers. Journal of Veterinary Pharmacology and Therapeutics. 37(6):611-614.
Kim, K.-R.Owens, G.Kwon, S.-I.So, K.-H.Lee, D.-B.Ok, Y.S.(2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution. 214(1-4):163-174.
Berger, K.Petersen, B.Buening-Pfaue, H.(1986). Persistence of drugs occurrring in liquid manure in the food chain. Archiv fuer Lebensmittelhygiene. 37:99-102.
Renner, R.(2002). Do cattle growth hormones pose an environmental risk? Environmental Science and Technology. 36:194A–197A.
Levy, S.B., The antibiotic paradox: how miracle drugs are destroying the miracle. 2013: Springer.
Yamaguchi, T.Okihashi, M.Harada, K.Konishi, Y.Uchida, K.Hoang Ngoc Do, M., et al.(2017). Detection of antibiotics in chicken eggs obtained from supermarkets in Ho Chi Minh City, Vietnam. Journal of Environmental Science and Health, Part B. 52(6):430-433.
Popova, I.E.Josue, R.D.Deng, S.Hattey, J.A.(2017). Tetracycline resistance in semi-arid agricultural soils under long-term swine effluent application. Journal of Environmental Science and Health, Part B. 52(5):298-305.
Leal, R.M.P.Figueira, R.F.Tornisielo, V.L.Regitano, J.B.(2012). Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Science of the total Environment. 432:344-349.
Li, Y.-x.Zhang, X.-l.Li, W.Lu, X.-f.Liu, B.Wang, J.(2013). The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental monitoring and assessment. 185(3):2211-2220.
Zhao, L.Dong, Y.H.Wang, H.(2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment. 408(5):1069-1075.
Hamscher, G.Sczesny, S.Höper, H.Nau, H.(2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical chemistry. 74(7):1509-1518.
Zhang, J.Dong, Y.An, Q.Liu, X.(2005). Environmental fate of veterinary medicines in soil. 37(4):353-361.
Hamscher, G.Pawelzick, H.T.Sczesny, S.Nau, H.Hartung, J.(2003). Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environmental Health Perspectives. 111(13):1590.
Martínez-Carballo, E.González-Barreiro, C.Scharf, S.Gans, O.(2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution. 148(2):570-579.
Bao, Y.Zhou, Q.Guan, L.Wang, Y.(2009). Depletion of chlortetracycline during composting of aged and spiked manures. Waste Management. 29(4):1416-1423.
Slana, M.Sollner-Dolenc, M.(2016). Enrofloxacin degradation in broiler chicken manure under various laboratory conditions. Environmental Science and Pollution Research. 23(5):4422-4429.
Slana, M.Žigon, D.Sollner-Dolenc, M.(2017). Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment. Environmental Science and Pollution Research. 24(15):1-10.
Stone, J.J.Clay, S.A.Zhu, Z.Wong, K.L.Porath, L.R.Spellman, G.M.(2009). Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water research. 43(18):4740-4750.
Gagliano, G.McNamara, F.(1996). Environmental assessment for enrofloxacin BAYTRILÒ 3.23% concentrate antimicrobial solution. 21CFR Part 25.:1-119.
Wetzstein, H.Schneider, S.Karl, W. Kinetics of the biotransformation of enrofloxacin in aging cattle dung. in 102nd General Meeting of the American Society for Microbiology, Salt Lake City, UT. 2002.
Moraru, R.Pourcher, A.-M.Jadas-Hecart, A.Kempf, I.Ziebal, Kervarrec, M., et al.(2012). Changes in concentrations of fluoroquinolones and of ciprofloxacin-resistant Enterobacteriaceae in chicken feces and manure stored in a heap. Journal of Environmental Quality. 41(3):754-763.
Pierini, E.Famiglini, G.Mangani, F.Cappiello, A.(2004). Fate of enrofloxacin in swine sewage. Journal of Agricultural and Food chemistry. 52(11):3473-3477.
De Liguoro, M.Cibin, V.Capolongo, F.Halling-Sørensen, B.Montesissa, C.(2003). Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. 52(1):203-212.
Kolz, A.Moorman, T.Ong, S.K.Scoggin, K.Douglass, E.(2005). Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environment Research. 77(1):49-56.
Loke, M.-L.Tjørnelund, J.Halling-Sørensen, B.(2002). Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. 48(3):351-361.
Dolliver, Gupta, S.Noll, S.(2008). Antibiotic degradation during manure composting. Journal of environmental quality. 37(3):1245-1253.
Arikan, O.A.Mulbry, W.Rice, C.(2009). Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials. 164(2-3):483-489.
Gou, M.Hu, H.-W.Zhang, Y.-J.Wang, J.-T.Hayden, H.Tang, Y.-Q., et al.(2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment. 612:1300-1310.
Yang, B.Meng, L.Xue, N.(2018). Removal of five fluoroquinolone antibiotics during broiler manure composting. Environmental technology. 39(3):373-381.
Chadwick, D.R.Chen, S., Manures, in Agriculture, hydrology and water quality, P.M. Haygarth and S.C. Jarris, Editors. 2002, CABI Publishing: Wallington, UK.
Martin, S.(1979). Equilibrium and kinetic studies on the interaction of tetracyclines with calcium and magnesium. Biophysical Chemistry. 10(3-4):319-326.
Hartlieb, N.Ertunc, T.Schaeffer, A.Klein, W.(2003). Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environmental Pollution. 126(1):83-91.
Søeborg, T.Ingerslev, F.Halling-Sørensen, B.(2004). Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water. 57(10):1515-1524.
47.Gavalchin, J.Katz, S.E.(1994). The persistence of fecal-borne antibiotics in soil. Journal of AOAC International (USA). 77:481-485.
Kreuzig, R.Höltge, S.(2005). Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environmental Toxicology and Chemistry. 24(4):771-776.
Rabølle, M.Spliid, N.H.(2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. 40(7):715-722.
Blackwell, P.A.Kay, P.Boxall, A.B.(2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. 67(2):292-299.
Boxall, A.B.Johnson, P.Smith, E.J.Sinclair, C.J.Stutt, E.Levy, L.S.(2006). Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry. 54(6):2288-2297.
Dolliver, H.Kumar, K.Gupta, S.(2007). Sulfamethazine uptake by plants from manure-amended soil. Journal of environmental quality. 36(4):1224-1230.
Hammad, H.M.Zia, F.Bakhat, H.F.Fahad, S.Ashraf, M.R.Wilkerson, C.J., et al.(2018). Uptake and toxicological effects of pharmaceutical active compounds on maize. Agriculture, Ecosystems & Environment. 258:143-148.
Gottlieb, D.(1976). The production and role of antibiotics in soil. The Journal of antibiotics. 29(10):987-1000.
Topp, W., Biologie der Bodenorganismen. 1981: Quelle and Meyer Heidelberg.
Lumsden, R.Locke, J.Adkins, S.Walter, J.Ridout, C.(1992). Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. 82:230–235.
Kumar, K.Gupta, S.Baidoo, S.Chander, Y.Rosen, C.(2005). Antibiotic uptake by plants from soil fertilized with animal manure. Journal of environmental quality. 34(6):2082-2085.
Kumar, K.Gupta, S.C.Chander, Y.Singh, A.K.(2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in agronomy. 87:1-54.
Zuccato, E.Calamari, D.Natangelo, M.Fanelli, R.(2000). Presence of therapeutic drugs in the environment. The lancet. 355(9217):1789-1790.
Kolpin, D.W.Furlong, E.T.Meyer, M.T.Thurman, E.M.Zaugg, S.D.Barber, L.B., et al.(2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology. 36(6):1202-1211.
Zhang, H.Luo, Y.Zhou, Q.(2008). Research advancement of eco-toxicity of tetracycline antibiotics. Journal of Agro-Environment Science. 27(2):407-413.
Zhang, H.Zhang, M.Gu, G.(2008). Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province. J Ecol Rural Environ. 24(3):69-73.
Zhang, M.Wang, L.Zhang, S.(2008). Adsorption and transport characteristics of two exterior two source antibiotics in some agricultural soils. Acta Ecologica Sinica. 28(2):761-766.
Golet, E.M.Strehler, A.Alder, A.C.Giger, W.(2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry. 74(21):5455-5462.
Li, Y.-W.Wu, X.-L.Mo, C.-H.Tai, Y.-P.Huang, X.-P.Xiang, L.(2011). Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. Journal of agricultural and food chemistry. 59(13):7268-7276.
Chen, C.Li, J.Chen, P.Ding, R.Zhang, P.Li, X.(2014). Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental Pollution. 193:94-101.
Hu, X.Zhou, Q.Luo, Y.(2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution. 158(9):2992-2998.
Jacobsen, A.M.Halling-Sørensen, B.Ingerslev, F.Hansen, S.H.(2004). Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of chromatography A. 1038(1-2):157-170.
Halling‐Sørensen, B.Jacobsen, A.M.Jensen, J.SengeløV, G.Vaclavik, Ingerslev, F.(2005). Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: A field‐scale study in southern Denmark. Environmental Toxicology and Chemistry. 24(4):802-810.
Christian, T.Schneider, R.J.Färber, H.A.Skutlarek, D.Meyer, M.T.Goldbach, H.E.(2003). Determination of antibiotic residues in manure, soil, and surface waters. CLEAN–Soil, Air, Water. 31(1):36-44.
Ok, Y.S.Kim, S.-C.Kim, K.-R.Lee, S.S.Moon, D.H.Lim, K.J., et al.(2011). Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environmental monitoring and assessment. 174(1-4):693-701.
Karcı, A.Balcıoğlu, I.A.(2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the total environment. 407(16):4652-4664.
Aga, D.S.O'Connor, S.Ensley, S.Payero, J.O.Snow, D.Tarkalson, D.(2005). Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography− mass spectrometry. Journal of agricultural and food chemistry. 53(18):7165-7171.
Shelver, W.L.Hakk, H.Larsen, G.L.DeSutter, T.M.Casey, F.X.(2010). Development of an ultra-high-pressure liquid chromatography–tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. Journal of Chromatography 1217(8):1273-1282.
Kuppusamy, S.Kakarla, D.Venkateswarlu, K.Megharaj, M.Yoon, Y.-E.Lee, Y.B.(2018). Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems & Environment. 257:47-59.
Zarfl, C.Klasmeier, J.Matthies, M.(2009). A conceptual model describing the fate of sulfadiazine and its metabolites observed in manure-amended soils. 77(6):720-726.
Jechalke, S.Heuer, H.Siemens, J.Amelung, W.Smalla, K.(2014). Fate and effects of veterinary antibiotics in soil. Trends in microbiology. 22(9):536-545.
Thiele-Brun, S.Peters, D.(2007). Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Volkenrode. 57(1):13.
Junge, T.Meyer, K.Ciecielski, K.Adams, A.Schäffer, A.Schmidt, B.(2011). Characterization of non-extractable 14C-and 13C-sulfadiazine residues in soil including simultaneous amendment of pig manure. Journal of Environmental Science and Health, Part B. 46(2):137-149.
Popova, I.E.Bair, D.A.Tate, K.W.Parikh, S.J.(2013). Sorption, leaching, and surface runoff of beef cattle veterinary pharmaceuticals under simulated irrigated pasture conditions. Journal of environmental quality. 42(4):1167-1175.
Ostermann, A.Siemens, Welp, G.Xue, Q.Lin, X.Liu, X., et al.(2013). Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere. 91(7):928-934.
Pan, M.Chu, L.(2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution. 231:829-836.
Wu, X.Dodgen, L.K.Conkle, J.L.Gan, J.(2015). Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Science of The Total Environment. 536:655-666.
Bártíková, H.Podlipná, R.Skálová, L.(2016). Veterinary drugs in the environment and their toxicity to plants. 144:2290-2301.
Pan, M.Chu, L.(2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of The Total Environment. 545:48-56.
Leal, R.M.P.Alleoni, L.R.F.Tornisielo, V.L.Regitano, J.B.(2013). Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. 92(8):979-985.
Forster, M.Laabs, V.Lamshoft, M.Groeneweg, J.Zuhlke, S.Spiteller, M., et al.(2009). Sequestration of manure-applied sulfadiazine residues in soils. Environmental science & technology. 43(6):1824-1830.
Gulkowska, A.Sander, M.Hollender, J.Krauss, M.(2013). Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environmental science & technology. 47(13):6916-6924.
Poulsen, P.H.Al-Soud, W.A.Bergmark, L.Magid, J.Hansen, L.H.Sørensen, S.J.(2013). Effects of fertilization with urban and agricultural organic wastes in a field trial–Prokaryotic diversity investigated by pyrosequencing. Soil Biology and Biochemistry. 57:784-793.
Ding, G.-C.Radl, V.Schloter-Hai, B.Jechalke, S.Heuer, H.Smalla, K., et al.(2014). Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One. 9(3):e92958.
Ding, C.He, J.(2010). Effect of antibiotics in the environment on microbial populations. Applied microbiology and biotechnology. 87(3):925-941.
Hammesfahr, U.Heuer, H.Manzke, B.Smalla, K.Thiele-Bruhn, S.(2008). Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry. 40(7):1583-1591.
Thiele-Bruhn, S.Beck, I.-C.(2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. 59(4):457-465.
Westergaard, K.Müller, A.Christensen, S.Bloem, J.Sørensen, S.(2001). Effects of tylosin as a disturbance on the soil microbial community. Soil Biology and Biochemistry. 33(15):2061-2071.
Diao, X.Sun, Y.Sun, Z.Shen, J.(2004). Effects of Apramycin on microbial activity in different types of soil. Ecology and Environment. 13(4):565-568.
Fründ, H.-C.Schlösser, A.Westendarp, H.(2000). Effects of tetracycline on the soil microflora determined with microtiter plates and respiration measurement. Dtsch. Bodenkundl. Gesellsch. 93:244-247.
Kotzerke, A.Sharma, S.Schauss, K.Heuer, H.Thiele-Bruhn, S.Smalla, K., et al.(2008). Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution. 153(2):315-322.
Hund-Rinke, K.Simon, M.Lukow, T.(2004). Effects of tetracycline on the soil microflora: function, diversity, resistance. Journal of Soils and Sediments. 4(1):11.
Zielezny, Y.Groeneweg, J.Vereecken, H.Tappe, W.(2006). Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biology and Biochemistry. 38(8):2372-2380.
Čermák, L.Kopecký, J.Novotná, J.Omelka, M.Parkhomenko, N.Plháčková, K., et al.(2008). Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Applied soil ecology. 40(2):348-358.
Näslund, J.Hedman, J.E.Agestrand, C.(2008). Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquatic toxicology. 90(3):223-227.
Aldén Demoling, L.Bååth, E.(2008). No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil. Environmental science & technology. 42(18):6917-6921.
Müller, A.Westergaard, K.Christensen, S.Sørensen, S.J.(2002). The diversity and function of soil microbial communities exposed to different disturbances. Microbial ecology. 44(1):49-58.
Liu, F.Ying, G.-G.Tao, R.Zhao, J.-L.Yang, J.-F.Zhao, L.-F.(2009). Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental pollution. 157(5):1636-1642.
Qingxiang, Y.Zhang, J.Kongfang, Z.Zhang, H.(2009). Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. Journal of Environmental Sciences. 21(7):954-959.
Wei, X.Wu, S.Nie, X.Yediler, A.Wong, M.(2009). The effects of residual tetracycline on soil enzymatic activities and plant growth. Journal of Environmental Science and Health, Part B. 44(5):461-471.
Yao, J.Niu, D.Li, Z.Liang, Y.Zhang, S.(2010). Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Scientia Agricultura Sinica. 43(4):721-728.
Macri, A.Stazi, A.Di Delupis, G.D.(1988). Acute toxicity of furazolidone onArtemia salina, Daphnia magna, andCulex pipiens molestus larvae. Ecotoxicology and environmental safety. 16(2):90-94.
Fedler, C.Day, D.(1985). Anaerobic digestion of swine manure containing an antibiotic inhibitor.
Kotzerke, A.Hammesfahr, U.Kleineidam, K.Lamshöft, M.Thiele-Bruhn, S.Schloter, M., et al.(2011). Influence of difloxacin-contaminated manure on microbial community structure and function in soils. Biology and fertility of soils. 47(2):177-186.
Schauss, K.Focks, A.Leininger, S.Kotzerke, A.Heuer, H.Thiele‐Bruhn, S., et al.(2009). Dynamics and functional relevance of ammonia‐oxidizing archaea in two agricultural soils. Environmental Microbiology. 11(2):446-456.
WANG, J.HAN, J.-z.(2008). Effects of Heavy Metals and Antibiotics on Soil and Vegetables.[J]. Journal of Ecology and Rural Environment. 4:90-93.
Bao, Y.Li, Y.Mo, C.Yao, Y.Tai, Y.Wu, X., et al.(2010). Determination of six sulfonamide antibiotics in vegetables by solid phase extraction and high performance liquid chromatography. Environ Chem. 29(3):513-518.
Jjemba, P.K.(2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture, Ecosystems & Environment. 93(1-3):267-278.
Sun, C.Dudley, Trumble, J.Gan, J.(2018). Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environmental Pollution. 234:39-47.
Migliore, L.Cozzolino, S.Fiori, M.(2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. 52(7):1233-1244.
Xie, X.Zhang, Y.Li, Z.Liang, Y.Yao, J.Zhang, S.(2009). Cultivar differences in toxic effects of oxytetracycline on wheat (Triticum durum). Asian J Ecotoxicol. 4(4):577-583.
Zhao, H.-M.Huang, H.-B.Du, H.Lin, J.Xiang, L.Li, Y.-W., et al.(2018). Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). Journal of Hazardous Materials.
Kong, W.Zhu, Y.Liang, Zhang, J.Smith, F.Yang, M.(2007). Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution. 147(1):187-193.
Hillis, D.G.Fletcher, J.Solomon, K.R.Sibley, P.K.(2011). Effects of ten antibiotics on seed germination and root elongation in three plant species. Archives of environmental contamination and toxicology. 60(2):220-232.
Manyi-Loh, C.Mamphweli, S.Meyer, E.Okoh, A.(2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. 23(4):795.
McKinney, C.W.Dungan, R.S.Moore, A.Leytem, A.B.(2018). Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiology Ecology.
Byrne-Bailey, K.Gaze, W.Kay, P.Boxall, A.Hawkey, P.Wellington, E.(2009). Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrobial Agents and Chemotherapy. 53(2):696-702.
Marti, R.Scott, A.Tien, Y.-C.Murray, R.Sabourin, L.Zhang, Y., et al.(2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and environmental microbiology. 79(18):5701-5709.
Wolters, B.Jacquiod, S.Sørensen, S.J.Widyasari-Mehta, A.Bech, T.B.Kreuzig, R., et al.(2018). Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS microbiology ecology. 94(4):fiy027.
Smith, D.L.Dushoff, J.Morris Jr, J.G.(2005). Agricultural antibiotics and human health. PLoS Medicine. 2(8):e232.