پیشبینی درماندگی مالی با استفاده از روش ترکیبی PCA-ANFIS و الگوریتم فراابتکاری بهینهسازی ازدحام کبوتر
محورهای موضوعی : مهندسی مالیسینا خردیار 1 , محمد حسن قلیزاده 2 , فروغ لطفی 3 *
1 - استادیار، گروه حسابداری، دانشگاه آزاد اسلامی واحد رشت، رشت، ایران
2 - دانشیار گروه مدیریت، دانشکده علوم انسانی، دانشگاه گیلان، رشت-ایران
3 - دانشجوی دکتری تخصصی مهندسی مالی، دانشگاه آزاد اسلامی واحد رشت، رشت، ایران
کلید واژه: نسبتهای مالی, درماندگی مالی, تحلیل مولفههای اصلی, الگوریتم فراابتکاری, سیستم استنتاج فازی عصبی انطباقپذیر (ANFIS),
چکیده مقاله :
در پژوهش حاضر یک سیستم استنتاج فازی عصبی انطباقپذیر (ANFIS) مبتنی بر تحلیل مولفههای اصلی (PCA) جهت پیشبینی درماندگی مالی شرکتها پیشنهاد شدهاست. این سیستم نه تنها توانایی سازگاری و یادگیری را دارد، بلکه خطا را نیز کاهش میدهد؛ زیرا از پارامترهای اضافی هنگامی که متغیرهای ورودی بیش از حد هستند، اجتناب میکند. برای تأیید اثربخشی این مدل، تعداد 181 شرکت پذیرفته شده در بورس اوراق بهادار تهران (905 شرکت-سال) با استفاده از نمونهای سیستماتیک در دوره زمانی 1390 تا 1394 انتخاب شدند که از این تعداد، 58 شرکت-سال درمانده مالی و تعداد 847 شرکت-سال سالم بودند. این شرکتها به طور تصادفی به دو مجموعه تقسیم شدند: مجموعه آموزش جهت طراحی مدل و مجموعه وارسی جهت اعتبارسنجی مدل. نتایج حاصل از پژوهش نشان میدهد سیستم استنتاج فازی عصبی انطباقپذیر (ANFIS) مبتنی بر تحلیل مولفههای اصلی (PCA) قابلیت پیشبینی وقوع درماندگی مالی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران را دارد و زمانیکه مدل پیشنهادی با الگوریتم فراابتکاری ازدحام کبوتر ترکیب میگردد با کاهش مقدار خطا دقت مدل افزایش مییابد. بنابراین مشاهده میشود که استفاده از یک الگوریتم مکمل میتواند دقت پیشبینی مدل PCA-ANFIS را افزایش دهد.
In this study, an Adaptive Neuro Fuzzy Inference System (ANFIS) based on Principal Component Analysis (PCA) is proposed for predicting the financial distress of companies. This system not only has the ability to adapt and learn, but also reduces the error, because it avoids additional parameters when input variables are too high. In order to confirm the effectiveness of this model, 181 listed companies in the Tehran Stock Exchange (905 companies-years) were selected by using systematic samples from 2011 to 2015, which 58 of those were distressed and 847 companies-years were healthy. These companies were randomly divided into two sets: a training set for designing model and a check set for validating the model. The results of the research show that the Adaptive Neuro Fuzzy Inference System based on Principal Component Analysis is capable for predicting the financial distress of companies accepted in Tehran Stock Exchange and when the proposed model is combined with Dove Swarm Optimization metaheuristic algorithm, Reducing the error value increases the accuracy of the model. Therefore, it can be seen that the use of a complementary algorithm can increase the predictability of the PCA-ANFIS model.
_||_