مقایسه رگرسیون خطی چندگانه و الگوریتمهای یادگیری ماشین در پیشبینی نگهداشت وجه نقد
محورهای موضوعی : مهندسی مالیسمیرا سیف 1 , مصطفی یوسفی طزرجان 2
1 - استادیار، گروه حسابداری، دانشگاه پیام نور، تهران، ایران.
2 - استادیار، گروه مهندسی صنایع، دانشگاه جامع علمی کاربردی، کرج، ایران
کلید واژه: پیشبینی, رگرسیون خطی چندگانه, نگهداشت وجه نقد, الگوریتمهای یادگیری ماشین,
چکیده مقاله :
در سالهای اخیر، در ادبیات مالی، توجه روز افزونی به سطح نگهداشت وجه نقد شرکتها شده است. لذا؛ پیشبینی برای تعیین سطح بهینه نگهداشت وجه نقد اهمیت دارد. در این پژوهش با استفاده از روشهای خطی و غیرخطی و 13 متغیر ورودی تاثیرگذار میزان وجه نقد در 103 شرکت پذیرفته شده در بورس اوراق بهادار ایران طی سالهای 1392 تا 1400 پیشبینی شده است. روشهای بهکار رفته شامل رگرسیون خطی چندگانه (MLR) ، نزدیکترین k همسایه (KNN) ، ماشین بردار پشتیبان (SVM) و شبکههای عصبی چند لایه (MLNN) برای پیشبینی استفاده شده است. نتایج نشان میدهد که روش سنتی رگرسیون خطی چندگانه در پیشبینی وجه نقد موفق عمل نکردهاند ولی الگوریتمهای یادگیری ماشین با دقت 99/0 برتر بودهاند. متغیرهای سود هر سهم، نسبت داراییهای جاری به بدهیهای جاری و نسبت بدهی کوتاهمدت به کل داراییها تاثیرگذاری بیشتری در همه الگوریتمها داشتهاند. بنابراین، مدیران میتوانند از الگوریتمهای پیشرفته یادگیری ماشین جهت پیشبینی میزان وجه نقد آینده شرکتها بهره بگیرند.
In recent years, in the financial literature, more attention has been paid to the level of cash holding of companies. So; Forecasting is important to determine the optimal level of cash holding. In this research, using linear and non-linear methods and 13 influential input variables, the amount of cash in 103 companies admitted to the Iran Stock Exchange during the years 2013 to 2021 has been predicted. The methods used include multiple linear regression (MLR), k nearest neighbor (KNN), support vector machine (SVM) and multi-layer neural networks (MLNN) for prediction. The results show that the traditional method of multiple linear regression has not been successful in predicting cash, but machine learning algorithms have been superior with an accuracy of 0.99. The variables of profit per share, the ratio of current assets to current liabilities and the ratio of short-term debt to total assets have had a greater impact in all algorithms. Therefore, managers can use advanced machine learning algorithms to predict the future cash flow of companies.
_|1) آقایی، محمدعلی. نظافت، احمدرضا. ناظمی اردکانی، مهدی. جوان، علی¬اکبر (1388) بررسی عوامل موثربرنگهداری موجودیهای نقدی درشرکتهای پذیرفته شده در بورس اوراق بهادار تهران، پژوهش¬های حسابداری مالی سال اول پاییز و زمستان ، شماره 1 و 2.
2) بیورانی، جباري خامنهاي (1392) “تحلیل آماري بـه کمـک نـرم افـزار SPSS و” Minitab چـاپ دوم، انتشـارات دانشـگاه کردستان، سنندج.
3) حساس یگانه، یحیی، جعفري، علی و رسائیان، امیر (1390) عوامل تعیین کننده سطح نگهداشت وجه نقد شرکت ها در بورس اوراق بهادار تهران، فصلنامه علمی پژوهشی حسابداري مالی، 9،39-66.
4) فروغی، داریوش ، فرزادی، سعید (1393) بررسی تاثیر تغییرات جریانهای نقدی بر سطح نگهداشت وجه نقد، فصلنامه علمی – پژوهشی مدیریت دارایی و تامین مالی، سال دوم شماره چهارم، شماره پیاپی(4) بهار، صص21-36.
5) رهنمای رودپشتی، فریدون و کیایی علی (1387) بررسی و تبیین سرمایه در گردش درشرکت-های پذیرفته شده در بورس اوراق بهادار تهران، دانش و پژوهش حسابداری.
6) حاجیها، زهره. رجب¬دری، حسین (1396) بررسی¬تأثیر ویژگی¬های کمیته حسابرسی برسطح نگهداری وجه نقد، دانش حسابداری، 29 رتبه ب (وزارت علوم/ISC (21 صفحه - 63 تا 83.
7) کاشانیپور، محمد .تقی زاده (1388) بررسی اثر محدودیتهای تامین مالی بر حساسیت جریان-های نقدی، تحقیقات حسابداری، ش 2 صص72-93.
8) مشکی مياوقی، مهدي و صنايعی ماسوله، مهيار (1395) بررسی تاثير انحراف از سطح بهينه نگهداشت وجه نقد بر ارزش وجه نقد. فصلنامه راهبرد مديريت مالی, سال چهارم, شماره 13.
9) نیکبخت، محمدرضا، صابرماهانی، معصومه، و دلدار، مصطفی (1400) آزمون اثربخشی تمرکز مشتری برسرعت تعدیل نگهداشت وجه نقد دربورس اوراق بهادار تهران. راهبرد مدیریت مالی، 9(32 )، 55-78.
10) Benkraiem R, Lakhal F, Zopounidis C (2020) International diversification and corporate cash holding behavior: What happens during economic downturns? J Econ Behav Organ 170:362–371. https:// doi. org/ 10. 1016/j. jebo. 2019. 12. 016.
11) Batuman B, Yildiz Y, Karan MB (2021) The impact of global financial crisis on corporate cash holdings: evidence from Eastern European countries. Borsa Istanbul Rev. https:// doi. org/ 10. 1016.
12) Bigelli M, Sanchez-Vidal J (2012) Cash holdings in private firms. J Bank Finance 36(1):26–35. https:// doi. org/ 10. 1016/j. jbank fin. 2011. 06.
13) Bhuiyan MBU, Hooks J (2019) Cash holding and over-investment behavior in firms with problem directors. Int Rev Econ Financial61:35–51.
14) Boubakri N, Ghoul S, Saffar W (2013) Cash holdings of politically connected firms. J Multinatl Finance Manag 23(4):338–355.
15) Cai W, Zeng C, Lee E, Ozkan N (2016) Do business groups affect corporate cash holdings? Evidence from a transition economy. China J Acc Res 9:1–24.
16) Cambrea DR, Calabro A, Rocca M, Paolone F (2021) The impact of boards of directors’ characteristics cash holdings in uncertain times. J Manag Gover.
17) Chen D, Li S, Xiao JZ, Zou H (2014) The effect of government quality on corporate cash holdings. J Corp Finance 27:384–400. https:// doi. org/ 10. 1016/j. jcorp fin. 2014. 05. 008.
18) Diaw A (2021) Corporate cash holdings in emerging markets. Borsa Istanbul Rev 21(2) 139–148. https:// doi. org/ 10. 1016/j. bir. 2020. 09. 005
19) Donepudi PK, Banu MH, Khan W, Neogy TP, Asadullah ABM, Ahmed AAA (2020) Artifical intelligence and machine learning in treasury management: a systematic literature review. Int J Manag 11(11):13–22.
20) Drobetz W, Gruninger MC (2007) Corporate cash holdings: evidence from Switzerland. Fin Mark Portfolio Mgmt 21(3):293–324.
21) Ferreira, M. A., and A. Vilela. (2004).Why Do Firms Hold Cash? Evidence fromEMU Countries, European FinancialManagement, Vol. 10, No. 2, 295.
22) Garcia-Teruel PJ, Martinez-Solano P (2008) On the determinants of SME cash holdings: evidence from Spain. J Bus Financial Acc 35(1–2):127–149.
23) Gholamzadeh Mohammadreza, Faghani Mahdi, Pifeh Ahmad (2021). Implementing machine learning methods in the prediction of the financial constraints of the companies listed on Tehran’s stock exchange. International Journal of Finance and Managerial Accounting. Vol. 6, No.20: 131-147.
24) Gill, A., & Shah, C. (2012). Determinants of corporate cash holdings: Evidence from Canada. International journal of economics and finance, 4(1), 70-79.
25) Guizani M (2017) the financial determinants of corporate cash holdings in an oil rich country: evidence from Kingdom of Saudi Arabia. Borsa Istanbul Rev 17(3):133–143.
26) Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feed forward networks are universal approximators. Neur. Net. 2: 5. 359-366.
27) Jani,E, Hoesli,M, Bender,A,Wd.(2004). Corporate Cash Holdings andAgency Conflicts, available: atwww.ssrn.com,id=563863.
28) Kim HJ, Han SH, Mun S (2021) Analyzing the effects of terrorist attacks on the value of cash holdings. Financial Res Lett. https:// doi. org/ 10. 1016/j. frl. 2021.
29) Lee, E., & Powell, R. (2011). Excess cash holdings and shareholder value. Accounting & finance, 51(2), 549-574.
30) Lozano MB, Yaman S (2020) The European financial crisis and firms’ cash holding policy: an analysis of the precautionary motive. Glob Pol 11(S1):84–94. https:// doi. / 10. 1111/ 1758- 5899. 12768.
31) Manoel AAS, Moraes MBC, Santos DFL, Neves MF (2018) Determinants of corporate cash holdings in times of crisis: insights from Brazilian sugarcane industry private firms. Int Food Agribus Manag Rev 21(2):201–217.
32) Mohammadi M, Kardan B, Salehi M (2018) The relationship between cash holdings, investment opportunities and financial constraint with audit fees. Asian J Account Res 3(1):15–27.
33) Ozlem1Şirin , Faruk Omer (2022) Predicting cash holdings using supervised machine learning algorithms, Financial Innovation, 8:44 https://doi.org/10.1186/s40854-022-00351-8.
34) Ozkan A (2001) Determinants of capital structure and adjustment to long-run target: evidence from UK company panel data. J Bus Financial Acc 28(1):175–198.
35) Ozkan A, Ozkan N (2004) Corporate cash holdings: an empirical investigation of UK companies. J Bank Finance 28(9):2103–2134. https:// doi. org/ 10. 1016/j. jbank fin. 2003. 08. 003.
36) Opler T, Pinkowitz L, Stulz H, Williamson R (1999) The determinants and implications of corporate cash holdings. J Financial Econ 52:3–46.
37) Rafi MM, Wahab, MT, Khan, MB, Raza H (2020) ATM cash prediction using time series approach. In: Paper presented at the 3rd international conference on computing, mathematics and engineering technologies (iCoMET), Sukkur IBA University, Pakistan, 29–30.
38) Sarfraz M, Shah SGM, Ivascu M, Quereshi MAA (2020) Explicating the impact of hierarchical CEO sucession on small-medium enterprises’ performance and cash holdings. Int J Financial Econ. https:// doi. org/ 10. 1002/ ijfe. 2289.
39) Schauten MB, Dijk D, van der Wall JP (2011) Corporate governance and the value of excess cash holdings of large European firms. Eur Financial Manag 19(5):991–1016.
40) Song K, Lee Y (2012) Long-term effects of a financial crisis: Evidence from cash holdings of East Asian firms. J Financial Quant Anal 47(3):617–641. https:// doi. org/ 10. 1017/ S0022 10901 20001 42.
41) Uyar A, Kuzey C (2014) Determinants of corporate cash holdings: Evidence from the emerging market of Turkey. Appl Econ 46(9):1035–1048. https:// doi. org/ 10. 1080/ 00036 846. 2013. 866203.
42) Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Verlag New York.
43) Wu H, Chen J. Wang P (2021) Cash holdings prediction using decision tree algorithms and comparison with logistic regression model. Cybern Syst ÷52 (8) 689–704. https:// doi. org/ 10. 1080/ 01969 722. 2021. 19769 88.
|_