مدل رژیم سوییچینگ مارکوف در راستای ارزیابی قیمتگذاری دارایی و ابهام در بازار سهام
محورهای موضوعی : مهندسی مالیمریم ایدی زاده 1 , حسن قدرتی قزاانی 2 * , علی اکبر فرزین فر 3 , حسین پناهیان 4
1 - گروه مدیریت صنعتی، واحد کاشان، دانشگاه آزاد اسلامی، کاشان، ایران.
2 - گروه مدیریت، واحد کاشان، دانشگاه آزاد اسلامی، کاشان، ایران.
3 - گروه حسابداری، واحد کاشان، دانشگاه آزاد اسلامی، کاشان، ایران.
4 - گروه مدیریت و حسابداری، واحد کاشان، دانشگاه آزاد اسلامی، کاشان، ایران.
کلید واژه: قیمتگذاری دارایی, رژیم سوییچینگ مارکوف, ابهام در بازار سهام,
چکیده مقاله :
پژوهش حاضر باهدف طراحی مدل رژیم سوییچینگ مارکوف در راستای ارزیابی قیمتگذاری دارایی و ابهام در بازار سهام ایران به انجام رسیده است. جهت برآورد مدل مارکوف به روش حذفی سیستماتیک 130 شرکت انتخاب و بر پایه عملکرد 1400 به دودسته 50 شرکت برتر و شرکتهای نا برتر تقسیم و مبتنی بر فرایندهای تصادفی جهت تعیین رژیمهای مارکوف، پورتفویهای سرمایهگذاری تشکیلشده و بر پایه برآورد مارکوف رژیمهای صعودی و نزولی تعریف و پارامترهای مارکوف برآورد گردیدند. برآورد رگرسیونی ارتباط بین بازده و عوامل مؤثر در شرکتهای تحت بررسی صرفنظر از دستهبندیها نشان داد که بین ریسک، درجات ابهام نرمال و لاپلاس با بازده ارتباط معکوس (تأثیر منفی) وجود داشته و عوامل تعیینکننده صرف ریسک بازار، بازده دارایی، بازده سرمایه، نوسان سود، جریانات نقدی، ارزش شرکت، نقد شوندگی داراییها، فرصتهای رشد، گردش دارایی و اندازه شرکت، با بازده سهام ارتباط معنیداری داشتهاند. در بین شرکتهای برتر بازده اضافی (صرف ریسک سهام) کمتر معمولاً با نوسانات ریسک کمتر و درجه ابهام بالاتر همراه بوده و صرف ریسک سهام بالاتر با نوسانات ریسک بالاتر و درجه ابهام کمتر همراه است.
The current research has been carried out with the aim of designing the Markov switching regime model in order to evaluate the asset pricing and uncertainty in the stock market in Iran's stock market. In order to estimate the Markov model by systematic elimination method, 130 companies were selected and based on their performance, 1400 were divided into two categories, the top 50 companies and the lowest companies, and based on random processes to determine Markov regimes, investment portfolios were formed and based on the estimation of the Markov regime were estimated. The regression estimation of the relationship between efficiency and effective factors in the companies under investigation, regardless of the categories, showed that there was an inverse relationship between risk, normal and Laplace uncertainty degrees with efficiency, and the only determining factors were market risk and asset efficiency. , return on capital, profit volatility, cash flows, company value, asset liquidity, growth opportunities, asset turnover and company size have a significant relationship with stock returns. Among top companies, lower additional returns are usually associated with lower risk fluctuations and higher degree of uncertainty, and higher share risk spending is associated with higher risk fluctuations and lower degree of uncertainty.
_|1) Amin Eshairi, A. (2021) "Investigation of the relationship between economic policy uncertainty and the risk of falling stock prices", New Research Approaches in Management and Accounting 5 (77).
2) Avgerou, C., Geoff, W., (2017). "Information Technology in Context: Studies from the Perspective of Developing Countries: Studies from the Perspective of Developing Countries". Routledge.
3) Bali, T.G., Zhou, H. (2016). "Risk, uncertainty, and expected returns". J. Financ. Quant. Anal, 51, pp. 707–735
4) Barberis, N., et al. (2015). "X-CAPM: An extrapolative capital asset pricing model". Journal of Financial Economics, 115 (1), pp. 1-24
5) Bernoulli, D. (1738). "Hydrodynamica sive de viribus et motibus fluidorum commentarii". Johannis Reinholdi Dulseckeri.
6) Bolstad, W. M., & Curran, J. M. (2016). "Introduction to Bayesian statistics". John Wiley & Sons
7) Carhart, M. M. (1997). "On persistence in mutual fund performance". The Journal of Finance, 52 (1), pp. 57e82.
8) Chen, B., Liu, X., Zhao, H., & Príncipe, J. C. (2017). "Maximum correntropy Kalman filter". Automatica, 76, pp. 70-77.
9) Driouchi, R.H.Y. So, L. Trigeorgis, T. (2020). "Investor ambiguity, systemic banking risk and economic activity: the case of too-big-to-fail". J. Corp. Financ, 62, pp. 101549, https://doi.org/10.1016/j.jcorpfin.2019.101549
10) Fama, E. F., & French, K. R. (2015). "A five-factor asset pricing model". Journal of Financial Economics, 116 (1), pp. 1e22. https://doi.org/10.1016/j. jfineco.2014.10.010
11) Fama, E. F., & French, K. R. (2013). "A. Five-Factor Asset Pricing Model. "Fama‐Miller Working Paper." Available at SSRN 2287202 (2013).
12) Fama, E.F., & French, K.R. (1992), "The Cross-Section of Expected Returns." Journal of Finance, 47 (2), 427-465.
13) Farhadi, Hamidreza, Nadiri, Mohammad, Saranj, Alireza, and Tehrani, Reza. (2023). Investigating the effect of herd behavior in Iran's economy on the efficiency of asset pricing model. Islamic Economics and Banking, 11 (38), 113-136. SID. https://sid.ir/paper/1040242/fa
14) Gilboa, D., & Schmeidler, I. (1989). "Maxmin expected utility with non-unique prior". J. Math. Econ, 18 (2), pp. 141–153
15) Halim, E., Yohanes, E. R., & Nilanjan, R. (2017). "Costly Information Acquisition, Social Networks and Asset Prices: Experimental Evidence." Washington.
16) Izhakian Y. (2017). "Expected utility with uncertain probabilities theory", J. Math. Econ. 69, pp. 91–103.
17) Jin, G., Liu, H., & Yang, Z. (2020). "Optimal consumption and investment strategies with liquidity risk and lifetime uncertainty for Markov regime-switching jump diffusion models, Eur". J. Oper. Res. 280 (3), pp. 1130–1143
18) Klibanoff, M. Marinacci, S., & Mukerji, P., "A smooth model of decision making under ambiguity". Econometrica, 73 (6), pp. 1849–1892
19) Li, J. (2020). "Preferences for partial information and ambiguity". Theor. Econ. 15 (3), 1059–1094.
20) Lintner, J. (1965). "The valuation of risk assets and selection of risky investments in stock portfolios and capital budgets". Review of Economics and Statistics, 47, pp. 13-37.
21) Maqsood, Hossein, Vakili Fard, Hamidreza, Torabi, Taghi (2019) "Variability testing of factors effective in predicting stock returns using dynamic averaging models", Financial Engineering and Securities Management, 11 (45), pp. 639 -660.
22) Merton, R. C. (1973). "An Intertemporal Capital Assets Pricing Model". Econometrica, 41 (5), pp. 867-87.org/10.1016/j.bir.2017.08.005
23) Nasiri, Koresh, & Askarzadeh, Gholamreza. (2023). Comparative analysis of the efficiency of Black-Scholes pricing model and binomial tree in Tehran Stock Exchange call option transactions. Financial Engineering and Securities Management, 14 (54), 25-42.
24) Rajizadeh, Simin. (1401). Evaluation of VIX volatility index in Iran's capital market and its future pricing effect using the Garou model. Financial Engineering and Securities Management, 13 (52), 60-80.
25) Sabouri, Narges, Karimpour, Enayat (1400) "Investigation of joint effects of economic policy uncertainty and company characteristics on capital structure (case study: companies admitted to the Tehran Stock Exchange)", new research methods in management and accounting , 5 (66).
26) Schmeidler, D. (1989). "Subjective probability and expected utility without additivity". Econometrica, 57 (3), 571–587.
27) Sharpe, W. F. (1964). "Capital asset prices: A theory of market equilibrium under conditions of risk". The journal of finance, 19 (3), pp. 425-442.
28) Shi, Z. (2019). "Time-varying ambiguity, credit spreads, and the levered equity premium". J. Financ. Econ, 134 (3), 617–646.
29) Wang, J., Zhou, M., Guo, X., Qi, L., & Wang, X. (2021). "A Markov regime switching model for asset pricing and ambiguity measurement of stock market". Neurocomputing, 435, pp. 283-294.
30) Wang, T., H. Li, X. Zhou, et al. (2020). "A prospect theory-based three-way decision model". Knowl.-Based Syst, 203, p. 106129, https://doi.org/10.1016/ j.knosys.2020.106129
31) Wang, X., Rong, H., & Zhao, S. (2019). "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans". Appl. Math. Comput. 346, pp. 205–218.
32) Xu, Yexiao., & Zhao, Yihua. (2023). Beta Reversal and Expected Returns. The University of Texas at Dallas, Vol 37 ،83-114.
|_