قیمت گذاری اوراق اختیار معامله با کمک روش نیکی وورو اوواروف
محورهای موضوعی : مهندسی مالیمهدی ابوالی 1 , مریم خلیلی عراقی 2 * , حسن حسن آبادی 3 , احمد یعقوب نژاد 4
1 - گروه مالی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مالی، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه فیزیک، دانشکده فیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران
4 - گروه حسابداری، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اختیار معامله, معادله قیمتگذاری بلکشولز, معادله شرودینگرگونه و روش پارامتریِ نیکیوورو – اووراروف,
چکیده مقاله :
اوراق اختیار از ابزارهای مهم بازارهای مالی بوده و قیمتگذاری اوراق با معادله قیمتگذاری بلک شولز بسیار متداول است. این معادله جهت قیمتگذاریِ اختیارهای اروپائى استفاده میشود. با بکارگیریِ علوم ریاضی در مباحث مالی، امکان ارائه مدلهای جدیدترِ قیمتگذاری اختیار معامله فراهم شده است. در این مقاله با روش جدید حل معادله دیفرانسیل تحت عنوان نیکیوورو - اوواروف، امکان ارائه مدل متفاوت قیمتگذاری بلک شولز بررسی گردید. سپس، معادله ای جدید برای قیمتگذاری اوراق اختیار معامله ارائه شد. افزایش دقت قیمتگذاری، رفع نواقص مدل بلک شولز، حل منطقی جدید و قابلیت مقایسه خروجی با حل عددی، اهمیت و نوآوری پژوهش حاضر میباشند. نتایج نشان داد؛ امکان ارائه مدل جدید قیمتگذاری اختیار معامله با روش نیکیوورو – اوواروف امکانپذیر بوده و در سطح اطمینان 95 درصد بین قیمتگذاری روش جدید و مدل بلک شولز تفاوت معنادار وجود ندارد. دقت بیشتر قیمتگذاری برای مبالغ بالا، امکان بکارگیریِ معادله در قیمتگذاری اختیار معامله های اروپایی و آمریکایی و اعمال محدودیتهای کمترِ اثبات معادله، مزیتهای مدل جدید هستند. به منظور مقایسه مدل جدید و مدل بلکشولز از اطلاعات 50 اختیار معامله زعفران در فرابورس ایران از سال 1395 لغایت 1398 استفاده و از آزمون مقایسه ای دو گروه مستقل ناپارامتریکِ من ویتنی استفاده گردید.
The Black-Scholes pricing theory is important ways of valuating transaction options. In this paper, a new method was developed to prove and improve the Black-Scholes equation by focusing on the Black-Scholes main Schrödinger equation and solving this equation using the NikkeuroOvaryov method. In the following, while investigating the possibility of improving the Black-Scholes equation with this method, a new equation for the pricing options was presented and tested. Increasing the accuracy of pricing arbitrary deals by using the equation provided, especially for high-value trades, logical solution in a new way, comparing output with numerical solution and innovating. Option based on Lagrange polynomial functions, the goals of doing research are present. The results showed a different positive probability for the Black-Scholes equation by solving the differential equation by the method Nikkirovo-Ovaryov is feasible and at 95% confidence level, there is no significant difference between the price of the two main black-hole groups and the new model. In order to compare the output of the new model with the Black Sholes main model, information from the 50 Saffron Deal options in Iran's Overseas Branch was limited to the 1395 to 1398 period and the Mann-Whitney independent nonparametric group was used to compare.
خلیلیِعراقی مریم و همکاران. (1395). "قیمتگذاری اوراق تبعی با استفاده از مدل هستون". پایاننامه کارشناسی ارشد، دانشگاه علوم تحقیقات تهران، صص 30 - 80.
جلوداری ممقانیپیکر. (1391). "محاسبه ارزش اختیار به روش گیلز". پژوهشنامه اقتصادی، تهران، صص 8-15.
خضریپور قرایی، رشید ستاردباغی، صفا و قاسمی. (1391). "یک مقایسه از روشهای شبیهسازی مونت کارلو و تفاضلات متناهی در ارزشگذاری اختیار معاملات توأم با مانع دوتایی در حالت گسسته". سومین کنفرانس ریاضیات مالی و کاربردها، تهران، صص 12 – 21.
سروستانی سلیمانی. ابراهیمی. (1391). "روش درخت دوجملهای برای قیمتگذاری اختیارات آسیایی در مدل پرش". سومین کنفرانس ریاضیات مالی و کاربردها. تهران. صص 8-13.
خاکی غلامرضا. (1391). "روش پژوهش با رویکردی به پایاننامه نویسی". تهران، انتشارات بازتاب چاپ سوم.
هال جان. (1388). "مبانی مهندسی مالی و مدیریت ریسک". ترجمه سجاد سیاح و علی صالحآبادی، تهران، چاپ دوم، شرکت کارگزاری مفید.
دلاور علی. (1373). "روشهای پژوهش در روانشناسی و علوم تربیتی". تهران، مرکز چاپ و انتشارات دانشگاه پیام نور، چاپ پنجم.
Khalili, Iraqi,. M., et al. (2016). Pricing of subordinate bonds using the Heston model. (Unpublished master’s thesis). Islamic Azad University, Science and Research Branch, Iran. (in Persian)
Jelodari Mamaghani, Mohammad. (1391). "Calculation of Validity Values by Giles Method". Economic Research, Tehran, Pages 8-15. (in Persian)
Khedzipour, Gharei., Stockbaghi, Rashid. (2012). A comparison of the Monte Carlo simulation methods and finite differences in the valuation of discrete double-ended dummy transactions. Third Conference on Mathematical Finance and Applications, Tehran, 12-21. (in Persian)
Sarvestani, Khadija., Soleimani, Ebrahimi. (2012). Binomial tree method for pricing Asian options in jump model. Third Conference on Mathematical Finance and Applications, Tehran, 8-13. (in Persian)
Khaki, G. (2012). "esearch method with a thesis approach (3rd ed.). Tehran, Iran: Baztab Publishing House. (in Persian)
Hall, John. (1388). "Fundamentals of Financial Engineering and Risk Management". Translation by Sajjad Seyah and Ali Saleh Abadi, Tehran, Second Edition, Brokerage Company. (in Persian)
Delawar, A. (1994). Research methods in psychology and educational sciences (5th ed.). Tehran, Iran: Payame Noor University Press and Publishing Center. (in Persian)
Alghalith, M. (2018). Pricing the American options using the Black-Scholes pricing formula. Physica A, 443 -450.
Sturm, Matthew., Goldstein, Henry. Huntington, Thomas. (2017). Using the pricing model approach to assess strategic decisions in turbulent environments: Black Scholes and airborne changes. Climatic Change, 2, 437–449.
Ivanov, Roman. (2015). The maximum gamma-ray variance distribution process and the pricing path of the options. European Finance, 2, 979-993.
Alghalith, Moawia. (2014). Pricing options: A very simple formula. Dorsoduro, 20(2), 71-73.
Kumar, S., Kumar, D., & Singh, J. (2014). Numerical computation of fractional Black-Scholes equation arising in financial market. Egyptian Journal of Basic and Applied Sciences, 1(3-4), 177-183.
Hemantha, Amershi. (2013). Pricing the option of expanding crack with capsules". European Finance. 37(1), 100-121.
Kumar, Vipul. (2013). Experimental competition in pricing options. School of Management, Volume, 19(2), 129-156.
Li, S. (2012). The implicit cost of interactions by the pricing model of lelend's powers. Mathematical sciences, 18(4), 333-360.
Jean-Pierre, P., Tashman, Adam. (2012). Option pricing under the beta stress model. Semantic Scholar,183-20.
Meng, Li., Wang, Mei. (2010). Comparison of the Beckhelsell formula with the frequency Black-Scholes formula in the exchange derivatives market by changing the oscillation. Basic and Applied Sciences, 99–111.
Ahn, J., Kang, S., & Kwon, Y. H. (2010). A Laplace transform finite difference method for the Black-Scholes equation. Mathematical and Computer Modelling, volum 5, 247-255.
Bohner, M., & Zheng, Y. (2009). On analytical solutions of the Black-Scholes equation. Applied Mathematics Letters, 22(3), 309-313.
Madan, mark. (2008). Combination of Black Schulz formulas with Brownian motion and limited connections. Applied Mathematics, 15(2), 97-115.
Broadie, mark., Jain, Ashish. (2008). Key variables fluctuations in pricing models of transaction options and risk management. Economics and Organization, 7(4), 7-24.
Christoffersen, peter., Jacobs, kris., Ornthanalai, Chayawat. (2008). Option Valuation with Long-Run and Short-Run Volatility Components. Journal of Financial Economics, Vol. 90, No. 3, pp. 272-297
Chen, Xu., Wan, Jian-ping. (2007). Pricing options to change the route of the Levy model under the MEM. Mathematical Statistics, 23(4), 651-664.
Olga, Shishkina. (2007). The approximation of solutions and derivatives to the Black-Scholes equation doubles with unhealthy initial data. Engineering Sciences, 47(3), 442-462.
Christoffersen, Jacobs and Ornthanalai. (2008). "Determine the price of the transaction option with the short-term and long-term volatility components". A Profesional development, PP 8-15.
Xu Chen. Jian-ping Wan. (2007). "Pricing options to change the route of the Levy model under the MEM". Mathematical Statistics, vol 23, issue 4, pp 651 -664.
- LiG. I. ShishkinL. P. Shishkina. (2007). "The approximation of solutions and derivatives to the Black-Scholes equation doubles with unhealthy initial data". Engineering Sciences, Volume 47, Issue 3, pp 442–462.
Ahn, J., Kang, S., & Kwon, Y. H. (2010). A Laplace transform finite difference method for the Black-Scholes equation. Mathematical and Computer Modelling, volum 5, 247-255.
Alghalith, M. (2018). Pricing the American options using the Black-Scholes pricing formula. Physica A, 443 -450.
Alghalith, Moawia. (2014). Pricing options: A very simple formula. Dorsoduro, 20(2), 71-73.
Bohner, M., & Zheng, Y. (2009). On analytical solutions of the Black-Scholes equation. Applied Mathematics Letters, 22(3), 309-313.
Broadie, mark., Jain, Ashish. (2008). Key variables fluctuations in pricing models of transaction options and risk management. Economics and Organization, 7(4), 7-24.
Chen, Xu., Wan, Jian-ping. (2007). Pricing options to change the route of the Levy model under the MEM. Mathematical Statistics, 23(4), 651-664.
Christoffersen, Jacobs and Ornthanalai. (2008). "Determine the price of the transaction option with the short-term and long-term volatility components". A Profesional development, PP 8-15.
Christoffersen, peter., Jacobs, kris., Ornthanalai, Chayawat. (2008). Option Valuation with Long-Run and Short-Run Volatility Components. Journal of Financial Economics, Vol. 90, No. 3, pp. 272-297
Delavar Ali (1373). "Research methods in psychology and educational sciences". Tehran, Payam Noor University Printing and Publishing Center, fifth edition.
Delawar, A. (1994). Research methods in psychology and educational sciences (5th ed.). Tehran, Iran: Payame Noor University Press and Publishing Center. (in Persian)
Hall, John. (1388). "Fundamentals of financial engineering and risk management". Translated by Sajjad Sayah and Ali Salehabadi, Tehran, second edition, Mofid Brokerage Company.
Hall, John. (1388). "Fundamentals of Financial Engineering and Risk Management". Translation by Sajjad Seyah and Ali Saleh Abadi, Tehran, Second Edition, Brokerage Company. (in Persian)
Hemantha, Amershi. (2013). Pricing the option of expanding crack with capsules". European Finance. 37(1), 100-121.
Ivanov, Roman. (2015). The maximum gamma-ray variance distribution process and the pricing path of the options. European Finance, 2, 979-993.
Jean-Pierre, P., Tashman, Adam. (2012). Option pricing under the beta stress model. Semantic Scholar,183-20.
Jelodari Mamaghani, Mohammad. (1391). "Calculation of Validity Values by Giles Method". Economic Research, Tehran, Pages 8-15. (in Persian)
Khaki Gholamreza (2011). "Research method with an approach to thesis writing". Tehran, 3rd Edition of Reflection Publications.
Khaki, G. (2012). "esearch method with a thesis approach (3rd ed.). Tehran, Iran: Baztab Publishing House. (in Persian)
Khalili, Iraqi,. M., et al. (2016). Pricing of subordinate bonds using the Heston model. (Unpublished master’s thesis). Islamic Azad University, Science and Research Branch, Iran. (in Persian)
Khalili-Iraqi Maryam and colleagues. (2015). "Pricing of subordinated bonds using Heston's model". Master's thesis, Tehran University of Research Sciences, pp. 80-30.
Khedzipour, Gharei., Stockbaghi, Rashid. (2012). A comparison of the Monte Carlo simulation methods and finite differences in the valuation of discrete double-ended dummy transactions. Third Conference on Mathematical Finance and Applications, Tehran, 12-21. (in Persian)
Khuzaripour Qaraei, Rashid Satdarbaghi, Safa and Ghasemi. (2011). "A Comparison of Monte Carlo and Finite Difference Simulation Methods in Option Valuation with Binary Barrier in Discrete Mode". The third conference on financial mathematics and applications, Tehran, pp. 12-21.
Kumar, S., Kumar, D., & Singh, J. (2014). Numerical computation of fractional Black-Scholes equation arising in financial market. Egyptian Journal of Basic and Applied Sciences, 1(3-4), 177-183.
Kumar, Vipul. (2013). Experimental competition in pricing options. School of Management, Volume, 19(2), 129-156.
Li, S. (2012). The implicit cost of interactions by the pricing model of lelend's powers. Mathematical sciences, 18(4), 333-360.
Madan, mark. (2008). Combination of Black Schulz formulas with Brownian motion and limited connections. Applied Mathematics, 15(2), 97-115.
Meng, Li., Wang, Mei. (2010). Comparison of the Beckhelsell formula with the frequency Black-Scholes formula in the exchange derivatives market by changing the oscillation. Basic and Applied Sciences, 99–111.
Olga, Shishkina. (2007). The approximation of solutions and derivatives to the Black-Scholes equation doubles with unhealthy initial data. Engineering Sciences, 47(3), 442-462.
Possible prevention. (2011). "Calculation of option value by Giles method". Economic Journal, Tehran, pp. 15-8.
- LiG. I. ShishkinL. P. Shishkina. (2007). "The approximation of solutions and derivatives to the Black-Scholes equation doubles with unhealthy initial data". Engineering Sciences, Volume 47, Issue 3, pp 442–462.
Sarostani Soleimani. Ebrahimi. (2011). "Binomial tree method for pricing Asian options in jump model". 3rd Conference on Financial Mathematics and Applications. Tehran. pp. 8-13.
Sarvestani, Khadija., Soleimani, Ebrahimi. (2012). Binomial tree method for pricing Asian options in jump model. Third Conference on Mathematical Finance and Applications, Tehran, 8-13. (in Persian)
Sturm, Matthew., Goldstein, Henry. Huntington, Thomas. (2017). Using the pricing model approach to assess strategic decisions in turbulent environments: Black Scholes and airborne changes. Climatic Change, 2, 437–449.
Xu Chen. Jian-ping Wan. (2007). "Pricing options to change the route of the Levy model under the MEM". Mathematical Statistics, vol 23, issue 4, pp 651 -664.